Advertisement

Ictal Source Locations and Cortico–Thalamic Connectivity in Childhood Absence Epilepsy: Associations with Treatment Response

  • Ailiang Miao
  • Yingxin Wang
  • Jing Xiang
  • Qianqian Liu
  • Qiqi Chen
  • Wenchao Qiu
  • Hongxing Liu
  • Lu Tang
  • Yuan Gao
  • Caiyun Wu
  • Yuanwen Yu
  • Jintao Sun
  • Wenwen Jiang
  • Qi Shi
  • Tingting Zhang
  • Zheng Hu
  • Xiaoshan Wang
Original Paper
  • 50 Downloads

Abstract

Childhood absence epilepsy (CAE), the most common pediatric epilepsy syndrome, is usually treated with valproic acid (VPA) and lamotrigine (LTG) in China. This study aimed to investigate the ictal source locations and functional connectivity (FC) networks between the cortices and thalamus that are related to treatment response. Magnetoencephalography (MEG) data from 25 patients with CAE were recorded at 300 Hz and analyzed in 1–30 Hz frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. The FC networks between the cortices and thalamus were evaluated at the source level through a connectivity analysis. Treatment outcome was assessed after 36–66 months following MEG recording. The children with CAE were divided into LTG responder, LTG non-responder, VPA responder and VPA non-responder groups. The ictal source locations and cortico–thalamic FC networks were compared to the treatment response. The ictal source locations in the post-dorsal medial frontal cortex (post-DMFC, including the medial primary motor cortex and the supplementary sensorimotor area) were observed in all LTG non-responders but in all LTG responders. At 1–7 Hz, patients with fronto–thalamo–parietal/occipital (F–T–P/O) networks were older than those with fronto–thalamic (F–T) networks or other cortico–thalamic networks (p = 0.000). The duration of seizures in patients with F–T–P/O networks at 1–7 Hz was longer than that in patients with F–T networks or other cortico–thalamic networks (p = 0.001). The ictal post-DMFC source localizations suggest that children with CAE might experience initial LTG monotherapy failure. Moreover, the cortico–thalamo–cortical network is associated with age. Finally, the cortico–thalamo–cortical network consists of anterior and posterior cortices and might contribute to the maintenance of discharges.

Keywords

Childhood absence epilepsy Magnetoencephalography Source location Cortico–thalamic network Treatment response 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81501126 and 81471324), Young Medical Key Talents Foundation of Jiangsu Province (Grant No. QNRC2016053), Training Project for Young Talents of Nanjing Brain Hospital, Key Project of Medical Science and Technology Development Foundation (Grant No. ZKX11002), Fourth Phase of Jiangsu “Project 333” Scientific Research Funding Schemes, 2013, Health Department of Jiangsu Province (Grant No. H201443), the Nanjing Medical University General Program (Grant Nos. 2014NJMU050 and 2017NJMU143).

Compliance with Ethical Standards

Conflict of interest

None of the authors has any conflict of interest to disclose.

Ethical Approval

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

References

  1. Amor F, Baillet S, Navarro V, Adam C, Martinerie J, Le Van Quyen M (2009) Cortical local and long-range synchronization interplay in human absence seizure initiation. NeuroImage 45:950–962.  https://doi.org/10.1016/j.neuroimage.2008.12.011 CrossRefPubMedGoogle Scholar
  2. Attal Y, Schwartz D (2013) Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS ONE.  https://doi.org/10.1371/journal.pone.0059856 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30:5884–5893.  https://doi.org/10.1523/JNEUROSCI.5101-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balderston NL, Schultz DH, Baillet S, Helmstetter FJ (2013) How to detect amygdala activity with magnetoencephalography using source imaging. J Vis Exp.  https://doi.org/10.3791/50212 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berg AT, Shinnar S, Levy SR, Testa FM, Smith-Rapaport S, Beckerman B (2000) How well can epilepsy syndromes be identified at diagnosis? A reassessment 2 years after initial diagnosis. Epilepsia 41:1269–1275CrossRefGoogle Scholar
  6. Berg AT, Berkovic SF, Brodie MJ (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685.  https://doi.org/10.1111/j.1528-1167.2010.02522.x CrossRefPubMedGoogle Scholar
  7. Bouma PA, Westendorp RG, van Dijk JG, Peters AC, Brouwer OF (1996) The outcome of absence epilepsy: a meta-analysis. Neurology 47:802–808CrossRefGoogle Scholar
  8. Carney PW, Masterton RAJ, Harvey AS, Scheffer IE, Berkovic SF, Jackson GD (2010) The core network in absence epilepsy. Neurology 75:904–911.  https://doi.org/10.1212/WNL.0b013e3181f11c06 CrossRefPubMedGoogle Scholar
  9. Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399CrossRefGoogle Scholar
  10. Davis R, Peters DH, McTavish D (1994) Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 2:332–372CrossRefGoogle Scholar
  11. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci 105:4028–4032.  https://doi.org/10.1073/pnas.0800376105 CrossRefPubMedGoogle Scholar
  12. Ferrie CD, Robinson RO, Knott C, Panayiotopoulos CP (1995) Lamotrigine as an add-on drug in typical absence seizures. Acta Neurol Scand 91:200–202CrossRefGoogle Scholar
  13. Fitton A, Goa KL (1995) Lamotrigine: an update of its pharmacology and therapeutic use in epilepsy. Drugs 50:691–713CrossRefGoogle Scholar
  14. Gadad V, Sinha S, Mariyappa N, Velmurugan J, Chaitanya G, Sain J, Thennarasu K, Satishchandra P (2018) Source analysis of epileptiform discharges in absence epilepsy using Magnetoencephalography (MEG). Epilepsy Res 140:46–52.  https://doi.org/10.1016/j.eplepsyres.2017.12.003 CrossRefPubMedGoogle Scholar
  15. Glauser TA1, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Capparelli EV, Adamson PC, Childhood Absence Epilepsy Study Group (2010) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 362:790–799.  https://doi.org/10.1056/NEJMoa0902014 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Glauser TA1, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Capparelli EV, Adamson PC, Childhood Absence Epilepsy Study Group (2013) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia 54:141–155.  https://doi.org/10.1111/epi.12028 CrossRefPubMedGoogle Scholar
  17. Gupta D, Ossenblok P, van Luijtelaar G (2011) Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy: a MEG study. Med Biol Eng Comput 49:555–565.  https://doi.org/10.1007/s11517-011-0778-3 CrossRefPubMedGoogle Scholar
  18. Holmes MD, Brown M, Tucker DM (2004) Are generalized seizures truly generalized? Evidence of localized mesial frontaland frontopolar discharges in absence. Epilepsia 45:1568–1579CrossRefGoogle Scholar
  19. Jallon P, Loiseau P, Loiseau J (2001) Newly diagnosed unprovoked epileptic seizures: presentation at diagnosis in CAROLE study. Epilepsia 42:464–475CrossRefGoogle Scholar
  20. Kokkinos V, Koupparis AM, Koutroumanidis M, Kostopoulos GK (2017) Spatiotemporal propagation patterns of generalized ictal spikes in childhood absence epilepsy. Clin Neurophysiol 128:1553–1562.  https://doi.org/10.1016/j.clinph.2017.05.021 CrossRefPubMedGoogle Scholar
  21. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci 100:11053–11058.  https://doi.org/10.1073/pnas.1831638100 CrossRefPubMedGoogle Scholar
  22. Leach MJ, Marden CM, Miller AA (1986) Pharmacological studies on lamotngine, a novel potential antiepileptic drug. 11. Neurochemical studies on the mechanism of action. Epilepsia 27:490–497CrossRefGoogle Scholar
  23. Liao W, Zhang Z, Mantini D, Xu Q, Ji GJ, Zhang H, Wang J, Wang Z, Chen G, Tian L, Jiao Q, Zang YF, Lu G (2014) Dynamical intrinsic functional architecture of the brain during absence seizures. Brain Struct Funct 219:2001–2015.  https://doi.org/10.1007/s00429-013-0619-2 CrossRefPubMedGoogle Scholar
  24. Loiseau P, Duché B, Pédespan JM (1995) Absence epilepsies. Epilepsia 36:1182–1186CrossRefGoogle Scholar
  25. Luttjohann A, van Luijtelaar G (2015) Dynamics of networks during absence seizure’s on-and offset in rodents and man. Front Physiol.  https://doi.org/10.3389/fphys.2015.00016 CrossRefPubMedPubMedCentralGoogle Scholar
  26. MacDonald RL, Bergey GK (1979) Valproic acid augments GABA mediated post-synaptic inhibition in cultured mammalian neurones. Brain Res 170:558–562CrossRefGoogle Scholar
  27. Masterton RA, Carney PW, Abbott DF, Jackson GD (2013) Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia 54:801–808.  https://doi.org/10.1111/epi.12163 CrossRefPubMedGoogle Scholar
  28. Meeren HK, Pijn JP, Van Luijtelaar EL (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495CrossRefGoogle Scholar
  29. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A (2005) Evolving concepts on the pathophysiology of absence seizures. Arch Neurol 62:371–376.  https://doi.org/10.1001/archneur.62.3.371 CrossRefPubMedGoogle Scholar
  30. Miao A, Tang L, Xiang J, Guan Q, Ge H, Liu H, Wu T, Chen Q, Yang L, Lu X, Hu Z, Wang X (2014a) Dynamic magnetic source imaging of absence seizure initialization and propagation: a magnetoencephalography study. Epilepsy Res 108:468–480.  https://doi.org/10.1016/j.eplepsyres.2014.01.006 CrossRefPubMedGoogle Scholar
  31. Miao A, Xiang J, Tang L, Ge H, Liu H, Wu T, Chen Q, Hu Z, Lu X, Wang X (2014b) Using ictal high-frequency oscillations (80-500Hz) to localize seizure onset zones in childhood absence epilepsy: a MEG study. Neurosci Lett 566:21–26.  https://doi.org/10.1016/j.neulet.2014.02.038 CrossRefPubMedGoogle Scholar
  32. Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M (2008) Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49:1510–1519.  https://doi.org/10.1111/j.1528-1167.2008.01626.x CrossRefPubMedGoogle Scholar
  33. Panayiotopoulos CP, Ferrie CD, Knott C, Robinson RO (1993) Interaction of lamotrigine with sodium valproate. Lancet 341:445CrossRefGoogle Scholar
  34. Papadelis C, Poghosyan V, Fenwick PB, Ioannides AA (2009) MEG’s ability to localise accurately weak transient neural sources. Clin Neurophysiol 120:1958–1970.  https://doi.org/10.1016/j.clinph.2009.08.018 CrossRefPubMedGoogle Scholar
  35. Pavone P, Bianchini R, Trifiletti RR, Incorpora G, Pavone A, Parano E (2001) Neuropsychological assessment in children with absence epilepsy. Neurology 56:1047–1051CrossRefGoogle Scholar
  36. Quraan MA, Moses SN, Hung Y, Mills T, Taylor MJ (2011) Detection and localization of hippocampal activity using beamformers with MEG: a detailed investigation using simulations and empirical data. Hum Brain Mapp 32:812–827.  https://doi.org/10.1002/hbm.21068 CrossRefPubMedGoogle Scholar
  37. Stefani A, Spadoni F, Bemardi G (1997) Voltage-activated calcium channels: targets of antiepileptic drug therapy? Epilepsia 38:959–965CrossRefGoogle Scholar
  38. Szaflarski JP, DiFrancesco M, Hirschauer T, Banks C, Privitera MD, Gotman J, Holland SK (2010) Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav 18:404–413.  https://doi.org/10.1016/j.yebeh.2010.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tang L, Xiang J, Huang S, Miao A, Ge H, Liu H, Wu D, Guan Q, Wu T, Chen Q, Yang L, Lu X, Hu Z, Wang X (2015) Neuromagnetic high-frequency oscillations correlate with seizure severity in absence epilepsy. Clin Neurophysiol 127:1120–1129.  https://doi.org/10.1016/j.clinph.2015.08.016 CrossRefPubMedGoogle Scholar
  40. Tenney JR, Fujiwara H, Horn PS, Jacobson SE, Glauser TA, Rose DF (2013) Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Res 106:113–122.  https://doi.org/10.1016/j.eplepsyres.2013.05.006 CrossRefPubMedGoogle Scholar
  41. Tenney JR, Fujiwara H, Horn PS, Vannest J, Xiang J, Glauser TA, Rose DF (2014) Low- and high-frequency oscillations reveal distinct absence seizure networks. Ann Neurol 76:558–567.  https://doi.org/10.1002/ana.24231 CrossRefPubMedGoogle Scholar
  42. Terzioğlu B, Aypak C, Onat FY, Küçükibrahimoğlu E, Ozkaynakçi AE, Gören MZ (2006) The effects of ethosuximide on amino acids in genetic absence epilepsy rat model. J Pharmacol Sci 100:227–233CrossRefGoogle Scholar
  43. van Luijtelaar G, Sitnikova E (2006) Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci Biobehav Rev 30:983–1003.  https://doi.org/10.1016/j.neubiorev.2006.03.002 CrossRefPubMedGoogle Scholar
  44. van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35.  https://doi.org/10.1016/j.pneurobio.2014.06.004 CrossRefPubMedGoogle Scholar
  45. Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, Thornton R, Rodionov R, Friston KJ, Duncan JS, Lemieux L (2009) Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS ONE.  https://doi.org/10.1371/journal.pone.0006475 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Westmijse I, Ossenblok P, Gunning B, van Luijtelaar G (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50:2538–2548.  https://doi.org/10.1111/j.1528-1167.2009.02162.x CrossRefPubMedGoogle Scholar
  47. Wheless JW, Clarke DF, Carpenter D (2005) Treatment of pediatric epilepsy: expert opinion. J Child Neurol 20(Suppl 1):S1–S56CrossRefGoogle Scholar
  48. Wirrell EC, Camfield CS, Camfield PR, Dooley JM, Gordon KE, Smith B (1997) Long-term psychosocial outcome in typical absence epilepsy: sometimes a wolf in sheeps’ clothing. Arch Pediatr Adolesc Med 151:152–158CrossRefGoogle Scholar
  49. Wirrell E, Wong-Kisiel L, Mandrekar J, Nickels K (2012) Predictors and course of medically intractable epilepsy in young children presenting before 36 months of age: a retrospective, population-based study. Epilepsia 53:1563–1569.  https://doi.org/10.1111/j.1528-1167.2012.03562.x CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wu C, Xiang J, Sun J, Huang S, Tang L, Miao A, Zhou Y, Chen Q, Hu Z, Wang X (2017) Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures. Neuroscience 357:134–144.  https://doi.org/10.1016/j.neuroscience CrossRefPubMedGoogle Scholar
  51. Xiang J, Liu Y, Wang Y, Kotecha R, Kirtman EG, Chen Y, Huo X, Fujiwara H, Hemasilpin N, De Grauw T, Rose D (2009) Neuromagnetic correlates of developmental changes in endogenous high-frequency brain oscillations in children: a wavelet-based beamformer study. Brain Res 1274:28–39.  https://doi.org/10.1016/j.brainres.2009.03.068 CrossRefPubMedGoogle Scholar
  52. Xiang J, Luo Q, Kotecha R, Korman A, Zhang F, Luo H, Fujiwara H, Hemasilpin N, Rose DF (2014) Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals. Front Neuroinform.  https://doi.org/10.3389/fninf.2014.00057 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xiang J, Tenney JR, Korman AM, Leiken K, Rose DF, Harris E, Yuan W, Horn PS, Holland K, Loring DW, Glauser TA (2015a) Quantification of interictal neuromagnetic activity in absence epilepsy with accumulated source imaging. Brain Topogr 28:904–914.  https://doi.org/10.1007/s10548-014-0411-5 CrossRefPubMedGoogle Scholar
  54. Xiang J, Korman A, Samarasinghe KM, Wang X, Zhang F, Qiao H, Sun B, Wang F, Fan HH, Thompson EA (2015b) Volumetric imaging of brain activity with spatial-frequency decoding of neuromagnetic signals. J Neurosci Methods 239:114–128.  https://doi.org/10.1016/j.jneumeth.2014.10.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ailiang Miao
    • 1
  • Yingxin Wang
    • 1
  • Jing Xiang
    • 2
  • Qianqian Liu
    • 3
  • Qiqi Chen
    • 4
  • Wenchao Qiu
    • 5
  • Hongxing Liu
    • 1
  • Lu Tang
    • 1
  • Yuan Gao
    • 1
  • Caiyun Wu
    • 1
  • Yuanwen Yu
    • 1
  • Jintao Sun
    • 1
  • Wenwen Jiang
    • 1
  • Qi Shi
    • 1
  • Tingting Zhang
    • 1
  • Zheng Hu
    • 6
  • Xiaoshan Wang
    • 1
  1. 1.Department of Neurology, Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
  2. 2.MEG Center, Division of NeurologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Department of PediatricsNanjing Jiangning HospitalNanjingChina
  4. 4.MEG CenterNanjing Brain HospitalNanjingChina
  5. 5.Department of NeurologyThe Affiliated Huaian Hospital of Xuzhou Medical UniversityHuai’anChina
  6. 6.Department of NeurologyNanjing Children’s HospitalNanjingChina

Personalised recommendations