Advertisement

Brain Topography

, Volume 32, Issue 3, pp 363–393 | Cite as

Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting

  • Daniela CalvettiEmail author
  • Annalisa Pascarella
  • Francesca Pitolli
  • Erkki Somersalo
  • Barbara Vantaggi
Original Paper
  • 124 Downloads

Abstract

A recently proposed iterated alternating sequential (IAS) MEG inverse solver algorithm, based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov subspace linear solver, has been shown to perform well for both superficial and deep brain sources. However, a systematic study of its ability to correctly identify active brain regions is still missing. We propose novel statistical protocols to quantify the performance of MEG inverse solvers, focusing in particular on how their accuracy and precision at identifying active brain regions. We use these protocols for a systematic study of the performance of the IAS MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each brain region identified in a given atlas. The performance in correctly identifying the active areas is measured by how much, on average, the reconstructed activity is concentrated in the brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting the estimated current activity as data for testing the hypothesis that the active brain region is correctly identified, versus the hypothesis of any erroneous attribution. The methodology allows the presence of a single or several simultaneous activity regions, without assuming that the number of active regions is known. The testing protocols suggest that the IAS solver performs well with both with cortical and subcortical activity estimation.

Keywords

MEG inverse problem Activity map Brain region Bayes factor Deep sources 

Notes

Acknowledgements

This work was completed during the visit of DC and ES at University of Rome “La Sapienza” (Visiting Researcher/Professor Grant 2015). The hospitality of the host university is kindly acknowledged. The work of ES was partly supported by NSF, Grant DMS-1312424. The work of DC was partially supported by grants from the Simons Foundation (#305322 and # 246665) and by NSF, Grant DMS-1522334.

Supplementary material

10548_2018_670_MOESM1_ESM.pdf (80 kb)
Supplementary material Figure S1 Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic data corresponding to randomly generated activity patches in the right frontal pole, indicated in red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left hemisphere and in black the ones of the right hemisphere. (pdf 79.7KB)
10548_2018_670_MOESM2_ESM.pdf (80 kb)
Supplementary material Figure S2 Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic data corresponding to randomly generated activity patches in the left amygdala, indicated in red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left hemisphere and in black the ones of the right hemisphere. (pdf 79.6KB)

References

  1. Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE et al (2012) MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data. Neuroinformatics 10(2):141–158CrossRefGoogle Scholar
  2. Algorri ME, Flores-Mangas F (2004) Classification of anatomical structures in MR brain images using fuzzy parameters. IEEE Trans Biomed Eng 51:1599–1608CrossRefGoogle Scholar
  3. Attal Y, Schwartz D (2013) Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS ONE 8:e59856CrossRefGoogle Scholar
  4. Attal Y, Maess B, Friederici A, David O (2012) Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data. Rev Neurosci 23:141–158CrossRefGoogle Scholar
  5. Auranen T, Nummenmaa A, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Vehtari A, Sams M (2005) Bayesian analysis of the neuromagnetic inverse problem with \(\ell _p\)-norm priors. NeuroImage 26:870–884CrossRefGoogle Scholar
  6. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30CrossRefGoogle Scholar
  7. Bernardo JM, Smith AFM (2004) Bayesian theory. Wiley, New YorkGoogle Scholar
  8. Brette R, Destexhe A (2012) Handbook of neural activity measurement. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Probl 31:125005CrossRefGoogle Scholar
  10. Calvetti D, Pitolli F, Somersalo E, Vantaggi B (2018) Bayes meets Krylov: preconditioning CGLS for underdetermined systems. SIAM Rev.  https://doi.org/10.1137/15M1055061.Google Scholar
  11. Calvetti D, Hakula H, Pursiainen S, Somersalo E (2009) Conditionally Gaussian hypermodels for cerebral source localization. SIAM J Imaging Sci 2:879–909CrossRefGoogle Scholar
  12. Ciofolo C, Barillot C (2009) Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control. Med Image Anal 13:456–470CrossRefGoogle Scholar
  13. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefGoogle Scholar
  14. Dale MA, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67CrossRefGoogle Scholar
  15. de Munck JC, Vijn PCM, da Silva FH Lopes (1992) A random dipole model for spontaneous brain activity. IEEE Trans BME 39:791–804CrossRefGoogle Scholar
  16. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefGoogle Scholar
  17. Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45:600–616CrossRefGoogle Scholar
  18. Gramfort A, Papadopoulos T, Olivi E, Clerc M (2010) Open MEEG: open source software for quasistatic bioelectromagnetics. Biomed Eng Online 9:45CrossRefGoogle Scholar
  19. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen MS (2014) MNE software for processing MEG and EEG data. NeuroImage 31:446–460CrossRefGoogle Scholar
  20. Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova G (2017) Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 175:531–544CrossRefGoogle Scholar
  21. Henson RN, Mattout J, Phillips C, Friston KJ (2009) Selecting forward models for MEG source-reconstruction using model-evidence. NeuroImage 46:168–176CrossRefGoogle Scholar
  22. Henson RN, Flandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531CrossRefGoogle Scholar
  23. Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–498CrossRefGoogle Scholar
  24. Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Report TKK-F-A559Google Scholar
  25. Huizenga HM, JaC De Munck, Waldorp LJ, Grasman RPPP (2002) Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model. IEEE Trans BME 49:533–539CrossRefGoogle Scholar
  26. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  27. Kiebel SJ, Daunizeau J, Phillips C, Friston KJ (2008) Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage 39:728–741CrossRefGoogle Scholar
  28. Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulos T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28CrossRefGoogle Scholar
  29. Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006a) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31:160–171CrossRefGoogle Scholar
  30. Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006b) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27:1–13CrossRefGoogle Scholar
  31. Lopez JD, Litvak V, Espinosa JJ, Friston K, Barnes GR (2014) Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage 84:476–487CrossRefGoogle Scholar
  32. Lucka F, Pursiainen S, Burger M, Wolters CH (2012) Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents. NeuroImage 61:1364–1382CrossRefGoogle Scholar
  33. Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30:753–767CrossRefGoogle Scholar
  34. Molins A, Stufflebeam SM, Brown EN, Hämáläinen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation. Neuroimage 42(3):1069–1077CrossRefGoogle Scholar
  35. Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole source localization. Electroenceph clin Neurophysiol 86:303–321CrossRefGoogle Scholar
  36. Nagarajan SS, Portniaguine O, Hwang D, Johnson C, Sekihara K (2006) Controlled support MEG imaging. NeuroImage 33:878–885CrossRefGoogle Scholar
  37. Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007a) Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35:669–685CrossRefGoogle Scholar
  38. Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007b) Automatic relevance determination based hierarchical Bayesian MEG inversion in practice. NeuroImage 3:876–889CrossRefGoogle Scholar
  39. Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. NeuroImage 60:305–323CrossRefGoogle Scholar
  40. Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782CrossRefGoogle Scholar
  41. Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86Google Scholar
  42. Sato M, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K, Kawato M (2004) Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23:806–826CrossRefGoogle Scholar
  43. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. NeuroImage 46:1004–1017CrossRefGoogle Scholar
  44. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comp Intell Neurosci 2011:879716Google Scholar
  45. Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA (2004) Bayesian model averaging in EEG/MEG imaging. NeuroImage 21:1300–1319CrossRefGoogle Scholar
  46. Uutela K, Hämäläinen MS, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10:173–180CrossRefGoogle Scholar
  47. Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280CrossRefGoogle Scholar
  48. Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44:947–966CrossRefGoogle Scholar
  49. Wipf DP, Owen JP, Attias HT, Sekihara K, Nagarajan SS (2010) Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49:641–655CrossRefGoogle Scholar
  50. Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Applied Mathematics and StatisticsCase Western Reserve UniversityClevelandUSA
  2. 2.Istituto per le Applicazioni del Calcolo “Mauro Picone”CNR - National Research CouncilRomeItaly
  3. 3.Department of Basic and Applied Science for EngineeringUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations