Brain Topography

, Volume 32, Issue 1, pp 66–79 | Cite as

Improved Back-Projection Cortical Potential Imaging by Multi-resolution Optimization Technique

  • Dror HaorEmail author
  • Roman Joffe
  • Reuven Shavit
  • Ziv Peremen
  • Yaki Stern
  • Amir B. Geva
Original Paper


Electroencephalogram (EEG) has evolved to be a well-established tool for imaging brain activity. This progress is mainly due to the development of high-resolution (HR) EEG methods. One class of HR-EEG is the cortical potential imaging (CPI), which aims to estimate the potential distribution on the cortical surface, which is much more informative than EEG. Even though these methods exhibit good performance, most of them have inherent inaccuracies that originate from their operating principles that constrain the solution or require a complex calculation process. The back-projection CPI (BP-CPI) method is relatively new and has the advantage of being constraint-free and computation inexpensive. The method has shown relatively good accuracy, which is necessary to become a clinical tool. However, better performance must be achieved. In the present study, two improvements are proposed. Both are embedded as adjacent stages to the BP-CPI and are based on the multi-resolution optimization approach (MR-CPI). A series of Monte-Carlo simulations were performed to examine the characteristics of the proposed improvements. Additional tests were done, including different EEG noise levels and variation in electrode-numbers. The results showed highly accurate cortical potential estimations, with a reduction in estimation error by a factor of 3.75 relative to the simple BP-CPI estimation error. We also validated these results with true EEG data. Analyzing these EEGs, we have demonstrated the MR-CPI competence to correctly localize cortical activations in a real environment. The MR-CPI methods were shown to be reliable for estimating cortical potentials, enabling researchers to obtain fast and robust high-resolution EEGs.


Multi-scaling Cortical potential imaging Back-projection Optimization Forward solution Monte-Carlo 



This work was supported (in part) by Grant from the MAGNET program of the Israeli OCS and by ElMindA Ltd.

Supplementary material

10548_2018_668_MOESM1_ESM.pdf (2.9 mb)
Supplementary material 1 (PDF 2.90 MB)


  1. Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc Natl Acad Sci 98(23):13367–13372CrossRefGoogle Scholar
  2. Babiloni C, Frisoni G, Steriade M, Bresciani L, Binetti G, Del Percio C, Geroldi C, Miniussi C, Nobili F, Rodriguez G et al (2006) Frontal white matter volume and delta eeg sources negatively correlate in awake subjects with mild cognitive impairment and alzheimer’s disease. Clin Neurophysiol 117(5):1113–1129CrossRefGoogle Scholar
  3. Babiloni F, Carducci F, Babiloni C, Urbano A (1998) Improved realistic laplacian estimate of highly-sampled eeg potentials by regularization techniques. Electroencephalogr Clin Neurophysiol 106(4):336–343CrossRefGoogle Scholar
  4. Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hämäläinen MS, Marinkovic K, Schacter DL, Rosen BR et al (2006) Top-down facilitation of visual recognition. Proc Natl Acad Sci USA 103(2):449–454CrossRefGoogle Scholar
  5. Baussard A, Miller EL, Lesselier D (2004) Adaptive multiscale reconstruction of buried objects. Inverse Probl 20(6):S1CrossRefGoogle Scholar
  6. Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, BerlinGoogle Scholar
  7. Benedetti M, Lesselier D, Lambert M, Massa A (2008) A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects. Inverse Probl 25(1):015009CrossRefGoogle Scholar
  8. Brodbeck V, Spinelli L, Lascano AM, Wissmeier M, Vargas MI, Vulliemoz S, Pollo C, Schaller K, Michel CM, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134(10):2887–2897CrossRefGoogle Scholar
  9. Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188(4):713–726CrossRefGoogle Scholar
  10. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage 30(4):1255–1272CrossRefGoogle Scholar
  11. Ding L, He B (2008) Sparse source imaging in electroencephalography with accurate field modeling. Hum Brain Mapp 29(9):1053–1067CrossRefGoogle Scholar
  12. Edelman BJ, Baxter B, He B (2016) Eeg source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans Biomed Eng 63(1):4–14CrossRefGoogle Scholar
  13. Feijóo GR, Oberai AA, Pinsky PM (2003) An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse Probl 20(1):199CrossRefGoogle Scholar
  14. Franceries X, Chauveau N, Sors A, Masquere M, Celsis P (2012) Conjugate gradient method applied to cortical imaging in eeg/erp. In: Petrova R (ed) Finite volume method-powerful means of engineering design. InTech, RijekaGoogle Scholar
  15. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113(5):702–712CrossRefGoogle Scholar
  16. Gavit L, Baillet S, Mangin JF, Pescatore J, Garnero L (2001) A multiresolution framework to meg/eeg source imaging. IEEE Trans Biomed Eng 48(10):1080–1087CrossRefGoogle Scholar
  17. Gevins A, Le J, Brickett P, Reutter B, Desmond J (1991) Seeing through the skull: advanced eegs use mris to accurately measure cortical activity from the scalp. Brain Topogr 4(2):125–131CrossRefGoogle Scholar
  18. Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B (1994) High resolution eeg: 124-channel recording, spatial deblurring and mri integration methods. Electroencephalogr Clin Neurophysiol 90(5):337–358CrossRefGoogle Scholar
  19. Grippo L, Lampariello F, Lucidi S (1986) A nonmonotone line search technique for newtons method. SIAM J Numer Analy 23(4):707–716CrossRefGoogle Scholar
  20. Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32(1):35–42CrossRefGoogle Scholar
  21. Haor D, Shavit R, Shapiro M, Geva A (2017) Back-projection cortical potential imaging: theory and results. IEEE Trans Med Imaging 36(7):1583–1595CrossRefGoogle Scholar
  22. He B, Zhang X, Lian J, Sasaki H, Wu D, Towle V (2002) Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects’ magnetic resonance images. NeuroImage 16(3):564–576CrossRefGoogle Scholar
  23. Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci 95(3):781–787CrossRefGoogle Scholar
  24. Hopf JM, Vogel E, Woodman G, Heinze HJ, Luck SJ (2002) Localizing visual discrimination processes in time and space. J Neurophysiol 88(4):2088–2095CrossRefGoogle Scholar
  25. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  26. Johnson B, Xie Z (2011) Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J Photogramm Remote Sens 66(4):473–483CrossRefGoogle Scholar
  27. Jousmäki V (2000) Tracking functions of cortical networks on a millisecond timescale. Neural Netw 13(8):883–889CrossRefGoogle Scholar
  28. Komssi S, Huttunen J, Aronen HJ, Ilmoniemi R (2004) Eeg minimum-norm estimation compared with meg dipole fitting in the localization of somatosensory sources at s1. Clin Neurophysiol 115(3):534–542CrossRefGoogle Scholar
  29. Lai Y, Zhang X, van Drongelen W, Korhman M, Hecox K, Ni Y, He B (2011) Noninvasive cortical imaging of epileptiform activities from interictal spikes in pediatric patients. Neuroimage 54(1):244–252CrossRefGoogle Scholar
  30. Lantz G, De Peralta RG, Spinelli L, Seeck M, Michel C (2003) Epileptic source localization with high density eeg: how many electrodes are needed? Clin Neurophysiol 114(1):63–69CrossRefGoogle Scholar
  31. Li J, Liu H, Zou J (2008) Multilevel linear sampling method for inverse scattering problems. SIAM J Sci Comput 30(3):1228–1250CrossRefGoogle Scholar
  32. Luck SJ (2014) An introduction to the event-related potential technique. MIT press, CambridgeGoogle Scholar
  33. Ma X, Guan X (2005) Loreta-contracting algorithm for solving eeg source distribution problems. COMPEL-Int J Comput Math Electr Electron Eng 24(3):821–828CrossRefGoogle Scholar
  34. McNay D, Michielssen E, Rogers R, Taylor S, Akhtari M, Sutherling W (1996) Multiple source localization using genetic algorithms. J Neurosci Methods 64(2):163–172CrossRefGoogle Scholar
  35. Miller EL, Willsky AS (1996) A multiscale, statistically based inversion scheme for linearized inverse scattering problems. IEEE Trans Geosci Remote Sens 34(2):346–357CrossRefGoogle Scholar
  36. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65CrossRefGoogle Scholar
  37. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans R Soc Lond A 369(1952):3768–3784CrossRefGoogle Scholar
  38. Roy AV, Jamison KW, He S, Engel SA, He B (2017) Deactivation in the posterior mid-cingulate cortex reflects perceptual transitions during binocular rivalry: evidence from simultaneous eeg-fmri. NeuroImage 152:1–11CrossRefGoogle Scholar
  39. Sergent C, Baillet S, Dehaene S (2005) Timing of the brain events underlying access to consciousness during the attentional blink. Nat Neurosci 8(10):1391CrossRefGoogle Scholar
  40. Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B (2015) Effect of eeg electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol 126(3):472–480CrossRefGoogle Scholar
  41. Sohrabpour A, Lu Y, Worrell G, He B (2016) Imaging brain source extent from eeg/meg by means of an iteratively reweighted edge sparsity minimization (ires) strategy. NeuroImage 142:27–42CrossRefGoogle Scholar
  42. Stern Y, Reches A, Geva AB (2016) Brain network activation analysis utilizing spatiotemporal features for event related potentials classification. Front Comput Neurosci 10:137CrossRefGoogle Scholar
  43. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1):273–289CrossRefGoogle Scholar
  44. Uutela K, Hamalainen M, Salmelin R (1998) Global optimization in the localization of neuromagnetic sources. IEEE Trans Biomed Eng 45(6):716–723CrossRefGoogle Scholar
  45. Van Uitert R, Johnson C, Zhukov L (2004) Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models. IEEE Trans Biomed Eng 51(12):2129–2137CrossRefGoogle Scholar
  46. Wang JZ, Williamson SJ, Kaufman L (1992) Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans Biomed Eng 39(7):665–675CrossRefGoogle Scholar
  47. Yamashita Y (1982) Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans Biomed Eng 11:719–725CrossRefGoogle Scholar
  48. Zhu M, Zhang W, Dickens DL, Ding L (2014) Reconstructing spatially extended brain sources via enforcing multiple transform sparseness. NeuroImage 86:280–293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.ElMindA, Ltd.HerzliyaIsrael

Personalised recommendations