Advertisement

Brain Topography

, Volume 31, Issue 6, pp 985–1000 | Cite as

Response Hand and Motor Set Differentially Modulate the Connectivity of Brain Pathways During Simple Uni-manual Motor Behavior

  • Alexandra Morris
  • Mathura Ravishankar
  • Lena Pivetta
  • Asadur Chowdury
  • Dimitri Falco
  • Jessica S. Damoiseaux
  • David R. Rosenberg
  • Steven L. Bressler
  • Vaibhav A. Diwadkar
Original Paper

Abstract

We investigated the flexible modulation of undirected functional connectivity (uFC) of brain pathways during simple uni-manual responding. Two questions were central to our interests: (1) does response hand (dominant vs. non-dominant) differentially modulate connectivity and (2) are these effects related to responding under varying motor sets. fMRI data were acquired in twenty right-handed volunteers who responded with their right (dominant) or left (non-dominant) hand (blocked across acquisitions). Within acquisitions, the task oscillated between periodic responses (promoting the emergence of motor sets) or randomly induced responses (disrupting the emergence of motor sets). Conjunction analyses revealed eight shared nodes across response hand and condition, time series from which were analyzed. For right hand responses connectivity of the M1 ←→ Thalamus and SMA ←→ Parietal pathways was more significantly modulated during periodic responding. By comparison, for left hand responses, connectivity between five network pairs (including M1 and SMA, insula, basal ganglia, premotor cortex, parietal cortex, thalamus) was more significantly modulated during random responding. uFC analyses were complemented by directed FC based on multivariate autoregressive models of times series from the nodes. These results were complementary and highlighted significant modulation of dFC for SMA → Thalamus, SMA → M1, basal ganglia → Insula and basal ganglia → Thalamus. The results demonstrate complex effects of motor organization and task demand and response hand on different connectivity classes of fMRI data. The brain’s sub-networks are flexibly modulated by factors related to motor organization and/or task demand, and our results have implications for assessment of medical conditions associated with motor dysfunction.

Keywords

Uni-manual responses Motor organization Right-handers fMRI Functional connectivity Granger causality 

Notes

Acknowledgements

Preparation of this work was supported by a Career Development Chair from Wayne State University, the Charles H. Gershenson Distinguished Faculty Fellowship from Wayne State University, the Lyckaki-Young Fund from the State of Michigan, the Prechter Family Bipolar Foundation, the Children’s Hospital of Michigan Foundation, the Children’s Research Center of Michigan, the Cohen Neuroscience Endowment, the Dorsey Endowment, a Medical Student Internship from the Detroit Medical Center, and the National Institute of Mental Health (MH 59299).

References

  1. Abboud R, Noronha C, Diwadkar VA (2017) Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry 44:125–133CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adhikari BM, Epstein CM, Dhamala M (2018) Enhanced brain network activity in complex movement rhythms: a simultaneous functional magnetic resonance imaging and electroencephalography study. Brain Connect 8(2):68–81CrossRefPubMedGoogle Scholar
  3. Ahissar E, Oram T (2015) Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex 25(4):845–848CrossRefPubMedGoogle Scholar
  4. Alahmadi AA, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT et al (2015) Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: an FMRI study. Hum Brain Mapp 36(12):5079–5100CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE et al (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4(3 Pt 1):216–222CrossRefPubMedGoogle Scholar
  6. Ardila A, Bernal B, Rosselli M (2018) Executive functions brain system: an activation likelihood estimation meta-analytic study. Arch Clin Neuropsychol 33(4):379–405CrossRefPubMedGoogle Scholar
  7. Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL (2015) Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci 9:309CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bernard JA, Seidler RD (2012) Hand dominance and age have interactive effects on motor cortical representations. PLoS ONE, 7(9), e45443CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bressler SL, Seth AK (2011) Wiener-Granger causality: a well established methodology. Neuroimage 58(2):323–329CrossRefPubMedGoogle Scholar
  10. Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148CrossRefPubMedGoogle Scholar
  11. Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28(40):10056–10061CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buchanan RW, Heinrichs DW (1989) The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 27:335–350CrossRefPubMedGoogle Scholar
  13. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA et al (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773CrossRefPubMedGoogle Scholar
  14. Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412CrossRefPubMedGoogle Scholar
  15. Diwadkar VA, Murphy ER, Freedman RR (2014) Temporal sequencing of brain activations during naturally occurring thermoregulatory events. Cereb Cortex 24:3006–3013CrossRefPubMedGoogle Scholar
  16. Diwadkar VA, Asemi A, Burgess A, Chowdury A, Bressler SL (2017a) Potentiation of motor sub-networks for motor control but not working memory: interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3), e0172531CrossRefPubMedPubMedCentralGoogle Scholar
  17. Diwadkar VA, Bellani M, Chowdury A, Savazzi S, Perlini C, Marinelli V et al (2017b) Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness. Brain Imaging Behav.  https://doi.org/10.1007/s11682-017-9750-7 CrossRefGoogle Scholar
  18. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361CrossRefPubMedGoogle Scholar
  19. First MD, Gibbon M, Spitzer RL, Williams JBW, Benjamin LS (1997) Structured clinical interview for DSM-IV axis II personality disorders. Biometrics Research Department, NYSPI, New YorkGoogle Scholar
  20. Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631CrossRefPubMedGoogle Scholar
  21. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667CrossRefPubMedGoogle Scholar
  22. Friedman A, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A et al (2017) Brain network dysfunction in obsessive-compulsive disorder induced by simple uni-manual behavior: the role of the dorsal anterior cingulate cortex. Psychiatry Res Neuroimaging 260:6–15CrossRefPubMedGoogle Scholar
  23. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36CrossRefPubMedGoogle Scholar
  24. Gao Q, Duan X, Chen H (2011) Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage 54(2):1280–1288CrossRefPubMedGoogle Scholar
  25. Ghaziri J, Tucholka A, Girard G, Houde JC, Boucher O, Gilbert G et al (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27(2):1216–1228CrossRefPubMedGoogle Scholar
  26. Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP (2010) The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp 31(8):1281–1295PubMedGoogle Scholar
  27. Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640CrossRefPubMedGoogle Scholar
  28. Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115(Pt 2):565–587CrossRefPubMedGoogle Scholar
  29. Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146(3):369–378CrossRefPubMedGoogle Scholar
  30. Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41(4):1382–1394CrossRefPubMedGoogle Scholar
  31. Guo Y, Schmitz TW, Mur M, Ferreira CS, Anderson MC (2017) A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia 108:117–134CrossRefPubMedGoogle Scholar
  32. Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A et al (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19(4):1349–1360CrossRefPubMedGoogle Scholar
  33. Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313CrossRefPubMedGoogle Scholar
  34. Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM (2004) Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 16(4):621–636CrossRefPubMedGoogle Scholar
  35. Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR et al (2014) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 35(6):2741–2753CrossRefPubMedGoogle Scholar
  36. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Stimulus-dependent BOLD and perfusion dynamics in human V1. Neuroimage 9(6 Pt 1):573–585CrossRefPubMedGoogle Scholar
  37. Jagtap P, Diwadkar VA (2016) Effective connectivity of ascending and descending frontalthalamic pathways during sustained attention: complex brain network interactions in adolescence. Hum Brain Mapp 37(7):2557–2570CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K et al (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261(5121):615–617CrossRefPubMedGoogle Scholar
  39. Kolodny T, Mevorach C, Shalev L (2017) Isolating response inhibition in the brain: parietal versus frontal contribution. Cortex 88:173–185CrossRefPubMedGoogle Scholar
  40. Lehericy S, Bardinet E, Tremblay L, Van de Moortele PF, Pochon JB, Dormont D et al (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 16(2):149–161CrossRefPubMedGoogle Scholar
  41. Liepmann H (1905) The left hemisphere and action. Republished in 1908 in Drei Aufsatze aus dem Apraxiegebiet. Karger, BerlinGoogle Scholar
  42. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878CrossRefPubMedGoogle Scholar
  43. Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage 11(5 Pt 1):473–481CrossRefPubMedGoogle Scholar
  44. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239CrossRefPubMedGoogle Scholar
  45. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052CrossRefPubMedGoogle Scholar
  46. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMedGoogle Scholar
  47. Muzik O, Diwadkar VA (2016) In vivo correlates of thermoregulatory defense in humans: temporal course of sub-cortical and cortical responses assessed with fMRI. Hum Brain Mapp 37(9):3188–3202CrossRefPubMedGoogle Scholar
  48. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869CrossRefPubMedGoogle Scholar
  49. Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660CrossRefPubMedGoogle Scholar
  50. Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28(10):2471–2484CrossRefPubMedGoogle Scholar
  51. Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411CrossRefPubMedGoogle Scholar
  52. Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616CrossRefPubMedGoogle Scholar
  53. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424CrossRefPubMedGoogle Scholar
  54. Pool EM, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2014) Handedness and effective connectivity of the motor system. Neuroimage 99:451–460CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pool EM, Rehme AK, Eickhoff SB, Fink GR, Grefkes C (2015) Functional resting-state connectivity of the human motor network: differences between right- and left-handers. Neuroimage 109:298–306CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR et al (2018) Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 39(3):1078–1092CrossRefPubMedGoogle Scholar
  57. Price CJ, Friston KJ (2005) Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol 22(3):262–275CrossRefPubMedGoogle Scholar
  58. Rathelot JA, Dum RP, Strick PL (2017) Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci USA 114(16):4255–4260CrossRefPubMedGoogle Scholar
  59. Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual thalamus. Neuron 71(2):209–223CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sale MV, Reid LB, Cocchi L, Pagnozzi AM, Rose SE, Mattingley JB (2017) Brain changes following four weeks of unimanual motor training: evidence from behavior, neural stimulation, cortical thickness, and functional MRI. Hum Brain Mapp 38(9):4773–4787CrossRefPubMedGoogle Scholar
  61. Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB et al (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123CrossRefPubMedGoogle Scholar
  62. Seizeur R, Magro E, Prima S, Wiest-Daessle N, Maumet C, Morandi X (2014) Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion tensor tractography. Surg Radiol Anat 36(2):111–124CrossRefPubMedGoogle Scholar
  63. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577CrossRefPubMedGoogle Scholar
  64. Silverstein B, Bressler S, Diwadkar VA (2016) Inferring the dysconnection syndrome in schizophrenia: interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry 7:132CrossRefPubMedPubMedCentralGoogle Scholar
  65. Singh KD (2012) Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. Neuroimage 62(2):1121–1130CrossRefPubMedGoogle Scholar
  66. Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H et al (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9(8):1861–1866CrossRefPubMedGoogle Scholar
  67. Sisti HM, Geurts M, Clerckx R, Gooijers J, Coxon JP, Heitger MH et al (2011) Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS ONE, 6(8), e23619CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tang W, Bressler SL, Sylvester CM, Shulman GL, Corbetta M (2012) Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. PLoS Comput Biol, 8(5), e1002513CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19(3):251–268CrossRefPubMedGoogle Scholar
  70. Tomasino B, Gremese M (2016) The cognitive side of M1. Front Hum Neurosci 10:298CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMedGoogle Scholar
  72. Tzourio-Mazoyer N, Petit L, Zago L, Crivello F, Vinuesa N, Joliot M et al (2015) Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front Hum Neurosci 9:5CrossRefPubMedPubMedCentralGoogle Scholar
  73. Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O (2017) Structure and function of the human insula. J Clin Neurophysiol 34(4):300–306CrossRefPubMedPubMedCentralGoogle Scholar
  74. van den Berg FE, Swinnen SP, Wenderoth N (2011) Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. J Cogn Neurosci 23(11):3456–3469CrossRefPubMedGoogle Scholar
  75. Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L (2010) Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. Neuroimage 49(1):977–983CrossRefPubMedGoogle Scholar
  76. Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79(4):2149–2154CrossRefPubMedGoogle Scholar
  77. Ward BD (2000) Simultaneous inference for fMRI data. Medical College of Wisconsin, Milwaukee, WIGoogle Scholar
  78. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141CrossRefPubMedGoogle Scholar
  79. Witt ST, Stevens MC (2013) The role of top-down control in different phases of a sensorimotor timing task: a DCM study of adults and adolescents. Brain Imaging Behav 7(3):260–273CrossRefPubMedGoogle Scholar
  80. Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zapparoli L, Seghezzi S, Paulesu E (2017) The what, the when, and the whether of intentional action in the brain: a meta-analytical review. Front Hum Neurosci 11:238CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexandra Morris
    • 1
  • Mathura Ravishankar
    • 1
  • Lena Pivetta
    • 1
  • Asadur Chowdury
    • 1
  • Dimitri Falco
    • 2
  • Jessica S. Damoiseaux
    • 3
    • 4
  • David R. Rosenberg
    • 1
  • Steven L. Bressler
    • 2
  • Vaibhav A. Diwadkar
    • 1
  1. 1.Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitUSA
  2. 2.Center for Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Department of PsychologyWayne State UniversityDetroitUSA
  4. 4.Institute of GerontologyWayne State UniversityDetroitUSA

Personalised recommendations