Brain Topography

, Volume 31, Issue 1, pp 125–128 | Cite as

Real-Time Clustered Multiple Signal Classification (RTC-MUSIC)

  • Christoph DinhEmail author
  • Lorenz Esch
  • Johannes Rühle
  • Steffen Bollmann
  • Daniel Güllmar
  • Daniel Baumgarten
  • Matti S. Hämäläinen
  • Jens Haueisen
Short Communication


Magnetoencephalography (MEG) and electroencephalography provide a high temporal resolution, which allows estimation of the detailed time courses of neuronal activity. However, in real-time analysis of these data two major challenges must be handled: the low signal-to-noise ratio (SNR) and the limited time available for computations. In this work, we present real-time clustered multiple signal classification (RTC-MUSIC) a real-time source localization algorithm, which can handle low SNRs and can reduce the computational effort. It provides correlation information together with sparse source estimation results, which can, e.g., be used to identify evoked responses with high sensitivity. RTC-MUSIC clusters the forward solution based on an anatomical brain atlas and optimizes the scanning process inherent to MUSIC approaches. We evaluated RTC-MUSIC by analyzing MEG auditory and somatosensory data. The results demonstrate that the proposed method localizes sources reliably. For the auditory experiment the most dominant correlated source pair was located bilaterally in the superior temporal gyri. The highest activation in the somatosensory experiment was found in the contra-lateral primary somatosensory cortex.


Real-time Source estimation RAP-MUSIC RTC-MUSIC Powell’s conjugate direction method K-means clustering 



This work was supported by the National Institutes of Health (NIH, Grants 4R01EB009048 and 5P41EB015896), European Union’s Horizon 2020 research and innovation program under grant agreement No 686865 the German Research Foundation (DFG, Grant Ba 4858/1-1), the Thuringian Ministry of Science under Grant Number 2015 FGR 0085 and the German Academic Exchange Service (DAAD).

Supplementary material

Supplementary material 1 (MP4 8609 KB)

10548_2017_586_MOESM2_ESM.docx (1.1 mb)
Supplementary material 2 (DOCX 1173 KB)


  1. Besserve M, Martinerie J, Garnero L (2011) Improving quantification of functional networks with EEG inverse problem: evidence from a decoding point of view. Neuroimage 55(4):1536–1547CrossRefPubMedGoogle Scholar
  2. Buch E, Weber C, Cohen LG, Braun C, a Dimyan M, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–917CrossRefPubMedPubMedCentralGoogle Scholar
  3. Congedo M, Lotte F, Lécuyer A (2006) Classification of movement intention by spatially filtered electromagnetic inverse solutions. Phys Med Biol 51(8):1971–1989CrossRefPubMedGoogle Scholar
  4. Dinh C, Luessi M, Sun L, Haueisen J, Hamalainen MS (2013) MNE-X: MEG/EEG real-time acquisition, real-time processing, and real-time source localization framework. Biomed Eng 58(1):4184Google Scholar
  5. Dinh C, Strohmeier D, Luessi M, Güllmar D, Baumgarten D, Haueisen J, Hämäläinen MS (2015) Real-time MEG source localization using regional clustering. Brain Topogr 28:1–14CrossRefGoogle Scholar
  6. Diwakar M, Tal O, Liu TT, Harrington DL, Srinivasan R, Muzzatti L, Song T, Theilmann RJ, Lee RR, Huang M-X (2011) Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer. Neuroimage 56(4):1918–1928CrossRefPubMedGoogle Scholar
  7. Jones SR, Kerr CE, Wan Q, Pritchett DL, Hamalainen MS, Moore CI (2010) Cued spatial attention drives functionally relevant modulation of the mu rhythm in primary somatosensory cortex. J Neurosci 30(41):13760–13765CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lotte F, Lecuyer A, Arnaldi B (2009) FuRIA: an inverse solution based feature extraction algorithm using fuzzy set theory for brain-computer interfaces. IEEE Trans Signal Process 57(8):3253–3263CrossRefGoogle Scholar
  9. Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47(2):332–340CrossRefGoogle Scholar
  10. Noirhomme Q, Kitney RI, Macq B (2008) Single-trial EEG source reconstruction for brain-computer interface. IEEE Trans Biomed Eng 55(5):1592–1601CrossRefPubMedGoogle Scholar
  11. Qin L, Ding L, He B (2004) Motor imagery classification by means of source analysis for brain-computer interface applications. J Neural Eng 1(3):135–141CrossRefPubMedGoogle Scholar
  12. Sudre GP, Parkkonen L, Bock E, Baillet S, Wang W, Weber DJ (2011) rtMEG: a real-time software interface for magnetoencephalography. Comput Intell Neurosci 2011:327953Google Scholar
  13. Ziegler DA, Pritchett DL, Hosseini-Varnamkhasti P, Corkin S, Hamalainen MS, Moore CI, Jones SR (2010) Transformations in oscillatory activity and evoked responses in primary somatosensory cortex in middle age: a combined computational neural modeling and MEG study. Neuroimage 52(3):897–912CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital - Massachusetts Institute of Technology - Harvard Medical SchoolCharlestownUSA
  2. 2.Institute of Biomedical Engineering and InformaticsTechnische Universität IlmenauIlmenauGermany
  3. 3.Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
  4. 4.Medical Physics Group, Institute of Diagnostic and Interventional RadiologyUniversity Hospital JenaJenaGermany
  5. 5.Institute of Electrical and Biomedical EngineeringUniversity of Health Sciences, Medical Informatics and Technology (UMIT)Hall in TirolAustria
  6. 6.Biomagnetic Center, Clinic for NeurologyJena University HospitalJenaGermany

Personalised recommendations