Brain Topography

, Volume 31, Issue 1, pp 76–89 | Cite as

Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA

  • René LabounekEmail author
  • David A. Bridwell
  • Radek Mareček
  • Martin Lamoš
  • Michal Mikl
  • Tomáš Slavíček
  • Petr Bednařík
  • Jaromír Baštinec
  • Petr Hluštík
  • Milan Brázdil
  • Jiří Jan
Original Paper


Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.


EEG ICA Spatiospectral patterns Multi-subject blind source separation Resting-state Semantic decision Visual oddball 



We would like to thank Dr. Milena Košťálová for her help with designing the semantic decision task. This research was supported Grant No. P304/11/1318 of Grant Agency of Czech Republic, by Grants Nos. FEKT-S-14-2210 and FEKT-S-11-2-921 of Brno University of Technology, by Grants Nos. CZ.1.05/1.1.00/02.0068 of Central European Institute of Technology and by Grants Nos. AZV 16-302100A of Palacký University. The funding is highly acknowledged. Computational resources were provided by the MetaCentrum under the program LM2010005 and the CERIT-SC under the program Centre CERIT Scientific Cloud, part of the Operational Program Research and Development for Innovations, Reg. No. CZ.1.05/3.2.00/08.0144.

Supplementary material

10548_2017_585_MOESM1_ESM.pdf (17.7 mb)
Supplementary material 1 (PDF 18130 KB)


  1. Allen PJ, Polizzi G, Krakow K et al (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239. doi:  10.1006/nimg.1998.0361 CrossRefPubMedGoogle Scholar
  2. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239. doi:  10.1006/nimg.2000.0599 CrossRefPubMedGoogle Scholar
  3. Allen EA, Erhardt EB, Damaraju E et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2. doi:  10.3389/fnsys.2011.00002 PubMedPubMedCentralGoogle Scholar
  4. Allen EA, Erhardt EB, Wei Y et al (2012) Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage 59:4141–4159. doi:  10.1016/j.neuroimage.2011.10.010 CrossRefPubMedGoogle Scholar
  5. Anemüller J, Sejnowski TJ, Makeig S (2003) Complex independent component analysis of frequency-domain electroencephalographic data. Neural Netw 16:1311–1323. doi:  10.1016/j.neunet.2003.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. Int Jt Conf Neural Networks. doi:  10.1109/IJCNN.2008.4634130 Google Scholar
  7. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159. doi:  10.1162/neco.1995.7.6.1129 CrossRefPubMedGoogle Scholar
  8. Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45:434–444. doi:  10.1109/78.554307 CrossRefGoogle Scholar
  9. Bernat EM, Williams WJ, Gehring WJ (2005) Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol 116:1314–1334. doi:  10.1016/j.clinph.2005.01.019 CrossRefPubMedGoogle Scholar
  10. Brázdil M, Mikl M, Mareček R et al (2007) Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task. Neuroimage 35:827–835. doi:  10.1016/j.neuroimage.2006.12.020 CrossRefPubMedGoogle Scholar
  11. Bridwell DA, Calhoun V (2014) Fusing Concurrent EEG and fMRI intrinsic networks. In: Magnetoencephalography. Springer, Berlin Heidelberg, pp 213–235Google Scholar
  12. Bridwell DA, Wu L, Eichele T, Calhoun VD (2013) The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage 69:101–111. doi:  10.1016/j.neuroimage.2012.12.024 CrossRefPubMedGoogle Scholar
  13. Bridwell DA, Kiehl KA, Pearlson GD, Calhoun VD (2014) Patients with schizophrenia demonstrate reduced cortical sensitivity to auditory oddball regularities. Schizophr Res 158:189–194. doi:  10.1016/j.schres.2014.06.037 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bridwell DA, Steele VR, Maurer JM et al (2015) The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs. J Affect Disord 172:89–95. doi:  10.1016/j.jad.2014.09.054 CrossRefPubMedGoogle Scholar
  15. Bridwell DA, Rachakonda S, Silva RF et al (2016) Spatiospectral decomposition of multi-subject eeg: evaluating blind source separation algorithms on real and realistic simulated data. Brain Topogr. doi:  10.1007/s10548-016-0479-1 PubMedPubMedCentralGoogle Scholar
  16. Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  17. Calhoun VD, Adalı T (2012) Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng 5:60–73. doi:  10.1109/RBME.2012.2211076 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional mri data using independent component analysis. Hum Brain Mapp 14:140–151. doi:  10.1002/hbm CrossRefPubMedGoogle Scholar
  19. Calhoun VD, Pekar JJ, Pearlson GD (2004) Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI. Neuropsychopharmacology 29:2097–2107. doi:  10.1038/sj.npp.1300543 CrossRefPubMedGoogle Scholar
  20. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838. doi:  10.1002/hbm.20581 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Calhoun VD, Potluru VK, Phlypo R et al (2013) Independent component analysis for brain fMRI does indeed select for maximal independence. PLoS ONE 8:1–8. doi:  10.1371/journal.pone.0073309 CrossRefGoogle Scholar
  22. Cong F, He Z, Hämäläinen J et al (2013) Validating rationale of group-level component analysis based on estimating number of sources in EEG through model order selection. J Neurosci Methods 212:165–172. doi:  10.1016/j.jneumeth.2012.09.029 CrossRefPubMedGoogle Scholar
  23. Congedo M, Gouy-Pailler C, Jutten C (2008) On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clin Neurophysiol 119:2677–2686. doi:  10.1016/j.clinph.2008.09.007 CrossRefPubMedGoogle Scholar
  24. Congedo M, John RE, De Ridder D, Prichep L (2010) Group independent component analysis of resting state EEG in large normative samples. Int J Psychophysiol 78:89–99. doi:  10.1016/j.ijpsycho.2010.06.003 CrossRefPubMedGoogle Scholar
  25. Damoiseaux JS, Rombouts SARB, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853. doi:  10.1073/pnas.0601417103 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dornhege G, Blankertz B, Krauledat M et al (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53:2274–2281. doi:  10.1109/TBME.2006.883649 CrossRefPubMedGoogle Scholar
  27. Doron E, Yeredor A (2004) Asymptotically optimal blind separation of parametric Gaussian sources. In: Independent component analysis and blind signal separation. Springer, Berlin, Heidelberg, pp 390–397CrossRefGoogle Scholar
  28. Eichele T, Rachakonda S, Brakedal B et al (2011) EEGIFT: Group independent component analysis for event-related EEG data. Comput Intell Neurosci. doi:  10.1155/2011/129365 PubMedPubMedCentralGoogle Scholar
  29. Erhardt EB, Rachakonda S, Bedrick EJ et al (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095. doi:  10.1002/hbm.21170 CrossRefPubMedGoogle Scholar
  30. Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. Neuroscience 4:1–11. doi:  10.1186/1471-2202-4-22 Google Scholar
  31. Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316. doi:  10.1016/j.tins.2007.05.005 CrossRefPubMedGoogle Scholar
  32. Friston KJ, Holmes AP, Worsley KJ et al (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210. doi:  10.1002/hbm.460020402 CrossRefGoogle Scholar
  33. Himberg J, Hyvärinen A (2003) Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. In: 13th Workshop on Neural Networks for Signal Processing. IEEE, pp 259–268Google Scholar
  34. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222. doi:  10.1016/j.neuroimage.2004.03.027 CrossRefPubMedGoogle Scholar
  35. Hu L, Zhang ZG, Mouraux A, Iannetti GD (2015) Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. Neuroimage 111:442–453. doi:  10.1016/j.neuroimage.2015.01.062 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Huster RJ, Plis SM, Calhoun VD (2015) Group-level component analyses of EEG: validation and evaluation. Front Neurosci 9:254. doi:  10.3389/fnins.2015.00254 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hyvärinen A (2011) Testing the ICA mixing matrix based on inter-subject or inter-session consistency. Neuroimage 58:122–136. doi:  10.1016/j.neuroimage.2011.05.086 CrossRefPubMedGoogle Scholar
  38. Hyvärinen A, Ramkumar P (2013) Testing independent component patterns by inter-subject or inter-session consistency. Front Hum Neurosci 7:94. doi:  10.3389/fnhum.2013.00094 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkCrossRefGoogle Scholar
  40. Hyvärinen A, Ramkumar P, Parkkonen L, Hari R (2010) Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage 49:257–271. doi:  10.1016/j.neuroimage.2009.08.028 CrossRefPubMedGoogle Scholar
  41. Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115:1490–1505. doi:  10.1016/j.clinph.2004.01.001 CrossRefPubMedGoogle Scholar
  42. Kauppi JP, Parkkonen L, Hari R, Hyvärinen A (2013) Decoding magnetoencephalographic rhythmic activity using spectrospatial information. Neuroimage 83:921–936. doi:  10.1016/j.neuroimage.2013.07.026 CrossRefPubMedGoogle Scholar
  43. Kilner JMM, Mattout J, Henson R, Friston KJJ (2005) Hemodynamic correlates of EEG: a heuristic. Neuroimage 28:280–286. doi:  10.1016/j.neuroimage.2005.06.008 CrossRefPubMedGoogle Scholar
  44. Klassen BT, Hentz JG, Shill HA et al (2011) Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 77:118–124. doi:  10.1212/WNL.0b013e318224af8d CrossRefPubMedPubMedCentralGoogle Scholar
  45. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195. doi:  10.1016/S0165-0173(98)00056-3 CrossRefPubMedGoogle Scholar
  46. Kovacevic N, McIntosh AR (2007) Groupwise independent component decomposition of EEG data and partial least square analysis. Neuroimage 35:1103–1112. doi:  10.1016/j.neuroimage.2007.01.016 CrossRefPubMedGoogle Scholar
  47. Labounek R, Lamoš M, Mareček R et al (2015) Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG. J Neurosci Methods 245:125–136. doi:  10.1016/j.jneumeth.2015.02.016 CrossRefPubMedGoogle Scholar
  48. Labounek R, Janeček D, Mareček R et al (2016) Generalized EEG-fMRI spectral and spatiospectral heuristic models. In: IEEE 13th international symposium on biomedical imaging: From nano to macro. IEEE, Prague, pp 767–770. doi: 10.1109/ISBI.2016.7493379
  49. Lachaux J-P, Fonlupt P, Kahane P et al (2007) Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28:1368–1375. doi:  10.1002/hbm.20352 CrossRefPubMedGoogle Scholar
  50. Laufs H, Holt JL, Elfont R et al (2006) Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31:1408–1418. doi:  10.1016/j.neuroimage.2006.02.002 CrossRefPubMedGoogle Scholar
  51. Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548. doi:  10.1109/TBME.2005.851521 CrossRefPubMedGoogle Scholar
  52. Li Y-O, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28:1251–1266. doi:  10.1002/hbm.20359 CrossRefPubMedGoogle Scholar
  53. Li S, Wang Y, Bin G et al (2015) Space distribution of EEG responses to hanoi-moving visual and auditory stimulation with fourier independent component analysis. Front Hum Neurosci 9:1–13. doi:  10.3389/fnhum.2015.00405 Google Scholar
  54. Lio G, Boulinguez P (2013) Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: implications for single-subject and group analyses. Neuroimage 67:137–152. doi:  10.1016/j.neuroimage.2012.11.015 CrossRefPubMedGoogle Scholar
  55. Makeig S, Jung TP, Bell AJ et al (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94:10979–10984. doi:  10.1073/pnas.94.20.10979 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8:204–210. doi:  10.1016/j.tics.2004.03.008 CrossRefPubMedGoogle Scholar
  57. Mantini D, Perrucci MG, Del Gratta C et al (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175. doi:  10.1073/pnas.0700668104 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mantini D, Corbetta M, Perrucci MG et al (2009) Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage 44:265–274. doi:  10.1016/j.neuroimage.2008.08.019 CrossRefPubMedGoogle Scholar
  59. Mareček R, Lamoš M, Mikl M et al (2016) What can be found in scalp EEG spectrum beyond common frequency bands. EEG–fMRI study. J Neural Eng 13:1–13. doi:  10.1088/1741-2560/13/4/046026 Google Scholar
  60. Mareček R, Lamoš M, Labounek R et al (2017) Multiway array decomposition of EEG spectrum: Implications of its stability for the exploration of large-scale brain networks. Neural Comput. doi: 10.1162/NECO_a_00933 PubMedGoogle Scholar
  61. Meng J, Huang G, Zhang D, Zhu X (2013) Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface. Neurocomputing 104:115–126. doi:  10.1016/j.neucom.2012.11.004 CrossRefGoogle Scholar
  62. Miller KJ (2010) Broadband spectral change: evidence for a macroscale correlate of population firing rate? J Neurosci 30:6477–6479. doi:  10.1523/JNEUROSCI.6401-09.2010 CrossRefPubMedGoogle Scholar
  63. Murta T, Leite M, Carmichael DW et al (2015) Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Hum Brain Mapp 36:391–414. doi:  10.1002/hbm.22623 CrossRefPubMedGoogle Scholar
  64. Niedermeyer E, da Silva FL (2011) Electroencephalography: basic principles, clinical applications, and related fields, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  65. Nikulin VV, Nolte G, Curio G (2011) A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition. Neuroimage 55:1528–1535. doi:  10.1016/j.neuroimage.2011.01.057 CrossRefPubMedGoogle Scholar
  66. Nir Y, Fisch L, Mukamel R et al (2007) Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285. doi:  10.1016/j.cub.2007.06.066 CrossRefPubMedGoogle Scholar
  67. Novi Q, Guan C, Dat TH, Xue P (2007) Sub-band common spatial pattern (SBCSP) for brain-computer interface. Proc 3rd Int IEEE EMBS Conf Neural Eng. doi:  10.1109/CNE.2007.369647 Google Scholar
  68. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  69. Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27:341–356. doi:  10.1016/j.neuroimage.2005.04.014 CrossRefPubMedGoogle Scholar
  70. Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev 30:808–822. doi:  10.1016/j.neubiorev.2006.06.007 CrossRefPubMedGoogle Scholar
  71. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. Trans Biomed Eng IEEE 42:658–665. doi:  10.1109/10.391164 CrossRefGoogle Scholar
  72. Ponomarev VA, Mueller A, Candrian G et al (2014) Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults. Clin Neurophysiol 125:83–97. doi:  10.1016/j.clinph.2013.06.015 CrossRefPubMedGoogle Scholar
  73. Ramkumar P, Parkkonen L, Hari R, Hyvärinen A (2012) Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum Brain Mapp 33:1648–1662. doi:  10.1002/hbm.21303 CrossRefPubMedGoogle Scholar
  74. Ramkumar P, Parkkonen L, Hyvärinen A (2014) Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data. Neuroimage 86:480–491. doi:  10.1016/j.neuroimage.2013.10.032 CrossRefPubMedGoogle Scholar
  75. Rodriguez G, Copello F, Vitali P et al (1999) EEG spectral profile to stage Alzheimer’s disease. Clin Neurophysiol 110:1831–1837. doi:  10.1016/S1388-2457(99)00123-6 CrossRefPubMedGoogle Scholar
  76. Rosa MJ, Kilner J, Blankenburg F et al (2010) Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage 49:1496–1509. doi:  10.1016/j.neuroimage.2009.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Scheeringa RR, Fries P, Petersson K-MM et al (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583. doi:  10.1016/j.neuron.2010.11.044 CrossRefPubMedGoogle Scholar
  78. Sclocco R, Tana MG, Visani E et al (2014) EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal. Front Hum Neurosci 8:186. doi:  10.3389/fnhum.2014.00186 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shou G, Ding L, Dasari D (2012) Probing neural activations from continuous EEG in a real-world task: Time-frequency independent component analysis. J Neurosci Methods 209:22–34. doi:  10.1016/j.jneumeth.2012.05.022 CrossRefPubMedGoogle Scholar
  80. Soikkeli R, Partanen J, Soininen H et al (1991) Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 79:159–165. doi:  10.1016/0013-4694(91)90134-P CrossRefPubMedGoogle Scholar
  81. Spadone S, Della Penna S, Sestieri C et al (2015) Dynamic reorganization of human resting-state networks during visuospatial attention. Proc Natl Acad Sci USA 112:8112–8117. doi:  10.1073/pnas.1415439112 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Stone JV (2004) Independent component analysis: a tutorial introduction. MIT press, CambridgeGoogle Scholar
  83. Takeda Y, Hiroe N, Yamashita O, Sato M aki (2016) Estimating repetitive spatiotemporal patterns from resting-state brain activity data. Neuroimage 133:251–265. doi:  10.1016/j.neuroimage.2016.03.014 CrossRefPubMedGoogle Scholar
  84. Tang A (2010) Applications of second order blind identification to high-density EEG-based brain imaging: a review. In: International Symposium on Neural Networks. Springer Berlin, Heidelberg, pp 368–377Google Scholar
  85. Tang AC, Sutherland MT, McKinney CJ (2005) Validation of SOBI components from high-density EEG. Neuroimage 25:539–553. doi:  10.1016/j.neuroimage.2004.11.027 CrossRefPubMedGoogle Scholar
  86. Tichavský P, Koldovský Z, Doron E et al (2006) Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI. In: 14th European Signal Processing Conference. IEEE, Florence, pp 1–5Google Scholar
  87. Tomioka R, Dornhege G, Nolte G et al (2006) Spectrally weighted Common Spatial Pattern algorithm for single trial EEG classification. Dept Math Eng Univ Tokyo Tokyo Japan Tech Rep 40:1–23Google Scholar
  88. Van Den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141. doi:  10.1002/hbm.20737 CrossRefPubMedGoogle Scholar
  89. Van Der Meij R, Van Ede F, Maris E (2016) Rhythmic components in extracranial brain signals reveal multifaceted task modulation of overlapping neuronal activity. PLoS ONE 11:1–28. doi:  10.1371/journal.pone.0154881 Google Scholar
  90. Wang Y, Sokhadze EM, El-Baz AS et al (2015) Relative power of specific EEG bands and their ratios during neurofeedback training in children with autism spectrum disorder. Front Hum Neurosci 9:723. doi:  10.3389/fnhum.2015.00723 PubMedGoogle Scholar
  91. Wolpaw JR, Birbaumer N, Heetderks WJ et al (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173. doi:  10.1109/TRE.2000.847807 CrossRefPubMedGoogle Scholar
  92. Wu W, Gao X, Hong B, Gao S (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55:1733–1743. doi:  10.1109/TBME.2008.919125 CrossRefPubMedGoogle Scholar
  93. Wu L, Eichele T, Calhoun VD (2010) Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage 52:1252–1260. doi:  10.1016/j.neuroimage.2010.05.053 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yeredor A (2000) Blind source separation via the second characteristic function. Signal Process 80:897–902. doi:  10.1016/S0165-1684(00)00062-1 CrossRefGoogle Scholar
  95. Yu Q, Wu L, Bridwell DA et al (2016) Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Front Hum Neurosci. doi:  10.3389/fnhum.2016.00476 Google Scholar
  96. Yuan H, Liu T, Szarkowski R et al (2010) Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage 49:2596–2606. doi:  10.1016/j.neuroimage.2009.10.028 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • René Labounek
    • 1
    • 2
    • 3
    Email author
  • David A. Bridwell
    • 4
  • Radek Mareček
    • 2
  • Martin Lamoš
    • 1
    • 2
  • Michal Mikl
    • 2
  • Tomáš Slavíček
    • 1
    • 2
  • Petr Bednařík
    • 2
    • 5
    • 6
  • Jaromír Baštinec
    • 7
  • Petr Hluštík
    • 3
    • 8
  • Milan Brázdil
    • 2
  • Jiří Jan
    • 1
  1. 1.Department of Biomedical EngineeringBrno University of TechnologyBrnoCzech Republic
  2. 2.Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  3. 3.Department of NeurologyPalacký UniversityOlomoucCzech Republic
  4. 4.Mind Research NetworkAlbuquerqueUSA
  5. 5.Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA
  6. 6.Division of Endocrinology and DiabetesUniversity of MinnesotaMinneapolisUSA
  7. 7.Department of MathematicsBrno University of TechnologyBrnoCzech Republic
  8. 8.Department of NeurologyUniversity Hospital OlomoucOlomoucCzech Republic

Personalised recommendations