Advertisement

Brain Topography

, Volume 30, Issue 4, pp 473–485 | Cite as

Spatiotemporal Dynamics of the Cortical Responses Induced by a Prolonged Tactile Stimulation of the Human Fingertips

  • Clara Genna
  • Calogero M. Oddo
  • Chiara Fanciullacci
  • Carmelo Chisari
  • Henrik Jörntell
  • Fiorenzo Artoni
  • Silvestro Micera
Original Paper

Abstract

The sense of touch is fundamental for daily behavior. The aim of this work is to understand the neural network responsible for touch processing during a prolonged tactile stimulation, delivered by means of a mechatronic platform by passively sliding a ridged surface under the subject’s fingertip while recording the electroencephalogram (EEG). We then analyzed: (i) the temporal features of the Somatosensory Evoked Potentials and their topographical distribution bilaterally across the cortex; (ii) the associated temporal modulation of the EEG frequency bands. Long-latency SEP were identified with the following physiological sequence P100—N140—P240. P100 and N140 were bilateral potentials with higher amplitude in the contralateral hemisphere and with delayed latency in the ipsilateral side. Moreover, we found a late potential elicited around 200 ms after the stimulation was stopped, which likely encoded the end of tactile input. The analysis of cortical oscillations indicated an initial increase in the power of theta band (4–7 Hz) for 500 ms after the stimulus onset followed a decrease in the power of the alpha band (8–15 Hz) that lasted for the remainder of stimulation. This decrease was prominent in the somatosensory cortex and equally distributed in both contralateral and ipsilateral hemispheres. This study shows that prolonged stimulation of the human fingertip engages the cortex in widespread bilateral processing of tactile information, with different modulations of the theta and alpha bands across time.

Keywords

Touch Somatosensory cortex EEG Bilateral processing SEPs 

Notes

Acknowledgements

We thank Alessio Tommasetti for the graphic design of Fig. 1. This work was supported by the Ministry of Education, Universities and Research (Italy) and the Swedish Research Council via the Italy-Sweden bilateral research project J52I15000030005 SensBrain (Brain network mechanisms for integration of natural tactile input patterns), by the EU Grant FET 611687 NEBIAS Project (NEurocontrolled BIdirectional Artificial upper limb and hand prosthesiS) and by the Ronda project, Robotica indossabile personalizzata per la riabilitazione motoria dell’arto superiore in pazienti neurologici. Regione Toscana, Bando FAS Salute 2014 PAR FAS 2007-2013.

Author Contributions

CG designed the study, developed the experimental set up, performed the experiments, analyzed the data, discussed the results and wrote the paper. FA designed the study, co-supervised the experiments, analyzed the data, discussed the results and wrote the paper. CMO co-designed the study, developed the tactile stimulation platform and supervised its experimentation, discussed the results and wrote the paper. CF performed the experiments. CC and HJ provided neurophysiological background and discussed the results. SM co-supervised the experiments, co-designed the study, discussed the results and wrote the paper. All authors reviewed and approved the final manuscript.

Compliance with Ethical Standards

Ethical Approval

All procedures performed in this study involving healthy subjects were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adhikari BM, Sathian K, Epstein CM, Lamichhane B, Dhamala M (2014) Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity. Neuroimage 91:300–310. doi: 10.1016/j.neuroimage.2014.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989a) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62:694–710PubMedGoogle Scholar
  3. Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722PubMedGoogle Scholar
  4. Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503. doi: 10.1093/brain/114.6.2465 CrossRefPubMedGoogle Scholar
  5. Allison T, McCarthy G, Wood CC (1992) The relationship between human long-latency somatosensory evoked potentia ls recorded from the cortical surface and from the scalp. Electroencephalogr Clin Neurophysiol 84:301–314. doi: 10.1016/0168-5597(92)90082-M CrossRefPubMedGoogle Scholar
  6. Artoni F, Chisari C, Menicucci D, Fanciullacci C, Micera S (2012a) REMOV: EEG artifacts removal methods during Lokomat lower-limb rehabilitation. In: 2012 IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, New York, pp 992–997Google Scholar
  7. Artoni F, Gemignani A, Sebastiani L, Bedini R, Landi A, Menicucci D (2012b) ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis. In: 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, New York, pp 368–371Google Scholar
  8. Artoni F, Menicucci D, Delorme A, Makeig S, Micera S (2014) RELICA: a method for estimating the reliability of independent components. Neuroimage 103:391–400. doi: 10.1016/j.neuroimage.2014.09.010 CrossRefPubMedGoogle Scholar
  9. Aviles JM, Munoz FM, Kleinbohl D, Sebastian M, Jimenez SB (2010) A new device to present textured stimuli to touch with simultaneous EEG recording. Behav Res Methods 42:547–555. doi: 10.3758/BRM.42.2.547 CrossRefPubMedGoogle Scholar
  10. Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501. doi: 10.1523/JNEUROSCI.5228-04.2006 CrossRefPubMedGoogle Scholar
  11. Burton H, Videen T, Raichle M (1993) Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res 10:297–308CrossRefPubMedGoogle Scholar
  12. Cheyne D, Gaetz W, Garnero L, Lachaux J-P, Ducorps A, Schwartz D, Varela FJ (2003) Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cogn Brain Res 17:599–611. doi: 10.1016/s0926-6410(03)00173-3 CrossRefGoogle Scholar
  13. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. doi: 10.1016/j.jneumeth.2003.10.009 CrossRefPubMedGoogle Scholar
  14. Dupin L, Hayward V, Wexler M (2015) Direct coupling of haptic signals between hands. Proc Natl Acad Sci USA 112:619–624. doi: 10.1073/pnas.1419539112 CrossRefPubMedGoogle Scholar
  15. Eimer M, van Velzen J, Driver J (2002) Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. J Cogn Neurosci 14:254–271. doi: 10.1162/089892902317236885 CrossRefPubMedGoogle Scholar
  16. Garcia-Larrea L, Bastuji H, Mauguiere F (1991) Mapping study of somatosensory evoked potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80:201–214. doi: 10.1016/0168-5597(91)90122-E CrossRefPubMedGoogle Scholar
  17. Garcia-Larrea L, Lukaszewicz A-C, Mauguiere F (1995) Somatosensory responses during selective spatial attention: the N120-to-N140 trasition. Psychophysiology 32:526–537. doi: 10.1111/j.1469-8986.1995.tb01229.x CrossRefPubMedGoogle Scholar
  18. Gordon J, Ghex C (1991) Modality coding in the somatic sensory system. Principles of Neural Science. 3rd edn. Elsevier, New YorkGoogle Scholar
  19. Graimann B, Huggins JE, Levine SP, Pfurtscheller G (2002) Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin Neurophysiol 113:43–47. doi: 10.1016/S1388-2457(01)00697-6 CrossRefPubMedGoogle Scholar
  20. Greenspan JD, Bolanowski SJ (1996) The psychophysics of tactile perception and its peripheral physiological basis. In: Pain and touch, vol 2. Academic Press, San Diego, pp 25–103CrossRefGoogle Scholar
  21. Hämäläinen H, Kekoni J, Sams M, Reinikainen K, Näätänen R (1990) Human somatosensory evoked potentials to mechanical pulses and vibration: contributions of SI and SII somatosensory cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol 75:13–21. doi: 10.1016/0013-4694(90)90148-D CrossRefPubMedGoogle Scholar
  22. Hansson T, Brismar T (1999) Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:29–32. doi: 10.1016/S0304-3940(99)00508-X CrossRefPubMedGoogle Scholar
  23. Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734CrossRefPubMedGoogle Scholar
  24. Hlushchuk Y, Hari R (2006) Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 26:5819–5824. doi: 10.1523/JNEUROSCI.5536-05.2006 CrossRefPubMedGoogle Scholar
  25. Ishiko N, Hanamori T, Murayama N (1980) Spatial distribution of somatosensory responses evoked by tapping the tongue and finger in man. Electroencephalogr Clin Neurophysiol 50:1–10. doi: 10.1016/0013-4694(80)90317-X CrossRefPubMedGoogle Scholar
  26. Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556. doi: 10.1038/369554a0 CrossRefPubMedGoogle Scholar
  27. Jiang W, Tremblay F, Chapman CE (1997) Neuronal encoding of texture changes in the primary and the secondary somatosensory cortical areas of monkeys during passive texture discrimination. J Neurophysiol 77:1656–1662PubMedGoogle Scholar
  28. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359. doi: 10.1038/nrn2621 CrossRefPubMedGoogle Scholar
  29. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth A (2000) Principles of neural science, vol 4. McGraw-Hill, New YorkGoogle Scholar
  30. Kanno A, Nakasato N, Hatanaka K, Yoshimoto T (2003) Ipsilateral area 3b responses to median nerve somatosensory stimulation. Neuroimage 18:169–177. doi: 10.1006/nimg.2002.1283 CrossRefPubMedGoogle Scholar
  31. Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004a) Differential modulation of temporal and frontal components of the somatosensory N140 and the effect of interstimulus interval in a selective attention task. Brain Res Cogn Brain Res 19:33–39. doi: 10.1016/j.cogbrainres.2003.10.016 CrossRefPubMedGoogle Scholar
  32. Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004b) Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition. Clin Neurophysiol 115:871–879CrossRefPubMedGoogle Scholar
  33. Klatzky RL, Lederman SJ, Metzger VA (1985) Identifying objects by touch: an “expert system”. Percept Psychophys 37:299–302. doi: 10.3758/bf03211351 CrossRefPubMedGoogle Scholar
  34. Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16:606–617. doi: 10.1016/j.tics.2012.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ku Y et al. (2007) Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings. PLoS ONE 2:e771. doi: 10.1371/journal.pone.0000771 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Legrain V, Bruyer R, Guérit J-M, Plaghki L (2003) Nociceptive processing in the human brain of infrequent task-relevant and task-irrelevant noxious stimuli. A study with event-related potentials evoked by CO2 laser radiant heat stimuli. Pain 103:237–248CrossRefPubMedGoogle Scholar
  37. Leung YY, Bensmaia SJ, Hsiao SS, Johnson KO (2005) Time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents. J Neurophysiol 94:3037–3045. doi: 10.1152/jn.00001.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lorenz J, Garcia-Larrea L (2003) Contribution of attentional and cognitive factors to laser evoked brain potentials. Neurophys Clin/Clin Neurophysiol 33:293–301.CrossRefGoogle Scholar
  39. Makeig S, Delorme A, Westerfield M, Jung TP, Townsend J, Courchesne E, Sejnowski TJ (2004) Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol 2:e176. doi: 10.1371/journal.pbio.0020176 CrossRefPubMedPubMedCentralGoogle Scholar
  40. McGlone F, Kelly EF, Trulsson M, Francis ST, Westling G, Bowtell R (2002) Functional neuroimaging studies of human somatosensory cortex. Behav Brain Res 135:147–158. doi: 10.1016/S0166-4328(02)00144-4 CrossRefPubMedGoogle Scholar
  41. Menicucci D et al (2014) Brain responses to emotional stimuli during breath holding and hypoxia: an approach based on the independent component analysis. Brain Topogr 27:771–785. doi: 10.1007/s10548-013-0349-z CrossRefPubMedGoogle Scholar
  42. Michail G, Dresel C, Witkovsky V, Stankewitz A, Schulz E (2016) Neuronal oscillations in various frequency bands differ between pain and touch. Front Hum Neurosci 10:182. doi: 10.3389/fnhum.2016.00182 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moungou A, Thonnard JL, Mouraux A (2016) EEG frequency tagging to explore the cortical activity related to the tactile exploration of natural textures. Sci Rep 6:20738. doi: 10.1038/srep20738 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Munoz F, Reales JM, Sebastian MA, Ballesteros S (2014) An electrophysiological study of haptic roughness: effects of levels of texture and stimulus uncertainty in the P300. Brain Res 1562:59–68. doi: 10.1016/j.brainres.2014.03.013 CrossRefPubMedGoogle Scholar
  45. Neuper C, Wörtz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222CrossRefPubMedGoogle Scholar
  46. Nieuwenhuys R, Voogd J, Van Huijzen C (2007) The human central nervous system: a synopsis and atlas. Springer, BerlinGoogle Scholar
  47. Oddo CM, Beccai L, Vitiello N, Wasling HB, Wessberg J, Carrozza MC (2011) A mechatronic platform for human touch studies. Mechatronics 21:604–613. doi: 10.1016/j.mechatronics.2011.02.012 CrossRefGoogle Scholar
  48. Oddo CM et al. (2016) Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5:e09148. doi: 10.7554/eLife.09148 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719. doi: 10.1016/S1388-2457(00)00527-7 CrossRefPubMedGoogle Scholar
  50. Palva S, Linkenkaer-Hansen K, Naatanen R, Palva JM (2005) Early neural correlates of conscious somatosensory perception. J Neurosci 25:5248–5258. doi: 10.1523/JNEUROSCI.0141-05.2005 CrossRefPubMedGoogle Scholar
  51. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857. doi: 10.1016/S1388-2457(99)00141-8 CrossRefPubMedGoogle Scholar
  52. Pfurtscheller G, Krausz G, Neuper C (2001) Mechanical stimulation of the fingertip can induce bursts of beta oscillations in sensorimotor areas. J Clin Neurophysiol 18:559–564CrossRefPubMedGoogle Scholar
  53. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148.  10.1016/j.clinph.2007.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Salenius S, Schnitzler A, Salmelin R, Jousmaki V, Hari R (1997) Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5:221–228. doi: 10.1006/nimg.1997.0261 CrossRefPubMedGoogle Scholar
  55. Schnitzler A, Salmelin R, Salenius S, Jousmaki V, Hari R (1995) Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett 200:25–28. doi: 10.1016/0304-3940(95)12065-C CrossRefPubMedGoogle Scholar
  56. Schomer DL, Da Silva FL (2012) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  57. Sebastiani L, Castellani E, Gemignani A, Artoni F, Menicucci D (2015) Inefficient stimulus processing at encoding affects formation of high-order general representation: a study on cross-modal word-stem completion task. Brain Res 1622:386–396. doi: 10.1016/j.brainres.2015.06.042 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shanks M, Pearson R, Powell T (1985) The ipsilateral cortico-cortical connexions between the cytoarchitectonic subdivisions of the primary somatic sensory cortex in the monkey. Brain Res Rev 9:67–88CrossRefGoogle Scholar
  59. Stancak A (2003) Desynchronization of cortical rhythms following cutaneous stimulation: effects of stimulus repetition and intensity, and of the size of corpus callosum. Clin Neurophysiol 114:1936–1947. doi: 10.1016/s1388-2457(03)00201-3 CrossRefPubMedGoogle Scholar
  60. Sutherland MT, Tang AC (2006) Reliable detection of bilateral activation in human primary somatosensory cortex by unilateral median nerve stimulation. Neuroimage 33:1042–1054. doi: 10.1016/j.neuroimage.2006.08.015 CrossRefPubMedGoogle Scholar
  61. Tamè L, Pavani F, Papadelis C, Farne A, Braun C (2015) Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 36:1506–1523. doi: 10.1002/hbm.22719 CrossRefPubMedGoogle Scholar
  62. Tamè L, Braun C, Holmes NP, Farne A, Pavani F (2016) Bilateral representations of touch in the primary somatosensory cortex. Cogn Neuropsychol 33:48–66. doi: 10.1080/02643294.2016.1159547 CrossRefGoogle Scholar
  63. Tamura K (1972) Ipsilateral somatosensory evoked responses in man. Psychiatr Neurol J 26:83–94. doi: 10.1111/j.1440-1819.1972.tb01115.x Google Scholar
  64. Tanaka E, Inui K, Kida T, Miyazaki T, Takeshima Y, Kakigi R (2008) A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study. BMC Neurosci 9:116. doi: 10.1186/1471-2202-9-116 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tommerdahl M, Simons SB, Chiu JS, Favorov O, Whitsel BL (2006) Ipsilateral input modifies the primary somatosensory cortex response to contralateral skin flutter. J Neurosci 26:5970–5977CrossRefPubMedGoogle Scholar
  66. Weber AI, Saal HP, Lieber JD, Cheng JW, Manfredi LR, Dammann JF, Bensmaia SJ (2013) Spatial and temporal codes mediate the tactile perception of natural textures. Proc Natl Acad Sci USA 110:17107–17112. doi: 10.1073/pnas.1305509110 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yamashiro K, Inui K, Otsuru N, Kida T, Kakigi R (2009) Somatosensory off-response in humans: an MEG study. Neuroimage 44:1363–1368CrossRefPubMedGoogle Scholar
  68. Zopf R, Giabbiconi CM, Gruber T, Müller MM (2004) Attentional modulation of the human somatosensory evoked potential in a trial-by-trial spatial cueing and sustained spatial attention task measured with high density 128 channels EEG. Cogn. Brain Res 20:491–509. doi: 10.1016/j.cogbrainres.2004.02.014 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.The BioRobotics InstituteScuola Superiore Sant’AnnaPisaItaly
  2. 2.Bertarelli Foundation Chair in Translational NeuroEngineering, School of Engineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Federale de LausanneLausanneSwitzerland
  3. 3.Neurorehabilitation UnitUniversity Hospital of PisaPisaItaly
  4. 4.Department of Experimental Medical Science, BMCLund UniversityLundSweden

Personalised recommendations