Brain Topography

, Volume 30, Issue 5, pp 685–697 | Cite as

High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus

  • Naghmeh GhazalehEmail author
  • Wietske van der Zwaag
  • Stephanie Clarke
  • Dimitri Van De Ville
  • Raphael Maire
  • Melissa Saenz
Original Paper


Animal models of hearing loss and tinnitus observe pathological neural activity in the tonotopic frequency maps of the primary auditory cortex. Here, we applied ultra high-field fMRI at 7 T to test whether human patients with unilateral hearing loss and tinnitus also show altered functional activity in the primary auditory cortex. The high spatial resolution afforded by 7 T imaging allowed tonotopic mapping of primary auditory cortex on an individual subject basis. Eleven patients with unilateral hearing loss and tinnitus were compared to normal-hearing controls. Patients showed an over-representation and hyperactivity in a region of the cortical map corresponding to low frequencies sounds, irrespective of the hearing loss and tinnitus range, which in most cases affected higher frequencies. This finding of hyperactivity in low frequency map regions, irrespective of hearing loss range, is consistent with some previous studies in animal models and corroborates a previous study of human tinnitus. Thus these findings contribute to accumulating evidence that gross cortical tonotopic map reorganization is not a causal factor of tinnitus.


Tinnitus fMRI Primary auditory cortex Neural plasticity 



This work was supported by Swiss National Science Foundation Grant 320030_143989 and by the Centre d’Imagerie BioMédicale (CIBM) of the Université de Lausanne, Université de Genève, Hôpitaux Universitaires de Genève, Lausanne University Hospital, École Polytechnique Fédérale de Lausanne, and the Leenaards and Louis-Jeantet Foundations.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Axelsson A, Ringdahl A (1989) Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23:53–62CrossRefPubMedGoogle Scholar
  2. Baumann S, Petkov CI, Griffiths TD (2013) A unified framework for the organization of the primate auditory cortex. Front Syst Neurosci 7:11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boyen K, Langers DRM, de Kleine E, van Dijk P (2013) Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 295:67–78CrossRefPubMedGoogle Scholar
  4. Boyen K, de Kleine E, van Dijk P, Langers DRM (2014) Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res 312:48–59CrossRefPubMedGoogle Scholar
  5. Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390PubMedGoogle Scholar
  6. Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791CrossRefPubMedPubMedCentralGoogle Scholar
  7. Da Costa S, Zwaag W van der, Marques JP et al (2011) Human Primary Auditory Cortex Follows the Shape of Heschl’s Gyrus. J Neurosci 31:14067–14075CrossRefPubMedGoogle Scholar
  8. Da Costa S, Zwaag W van der, Miller LM et al (2013) Tuning In to sound: frequency-selective attentional filter in human primary auditory cortex. J Neurosci 33:1858–1863CrossRefPubMedPubMedCentralGoogle Scholar
  9. Da Costa S, Saenz M, Clarke S, van der Zwaag W (2015) Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI. Brain Topogr 28:66–69CrossRefPubMedGoogle Scholar
  10. De Martino F, Moerel M, van de Moortele P-F et al (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dick F, Tierney AT, Lutti A et al (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci Off J. Soc Neurosci 32:16095–16105CrossRefGoogle Scholar
  12. Eggermont JJ (2015) Animal models of spontaneous activity in the healthy and impaired auditory system. Front Neural Circuits 9:19.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eggermont JJ, Komiya H (2000) Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res 142:89–101CrossRefPubMedGoogle Scholar
  14. Eggermont JJ, Roberts LE (2012) The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Front Syst Neurosci 6:53.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336CrossRefPubMedGoogle Scholar
  16. Elgoyhen AB, Langguth B, De Ridder D, Vanneste S (2015) Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 16:632–642CrossRefPubMedGoogle Scholar
  17. Emmert K, Ville DVD, Bijlenga P et al (2014) Auditory cortex activation is modulated by somatosensation in a case of tactile tinnitus. Neuroradiology 56:511–514CrossRefPubMedGoogle Scholar
  18. Engel SA (2012) The development and use of phase-encoded functional MRI designs. NeuroImage 62:1195–1200.CrossRefPubMedGoogle Scholar
  19. Engineer ND, Riley JR, Seale JD et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470:101–104CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gu JW, Halpin CF, Nam E-C et al (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104(6):3361–3370. doi: 10.1152/jn.00226.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Guinchard AC, Ghazaleh N, Saenz M, Fornari E, Prior JO, Maeder P, Adib A, Maire R (2016) Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus. Hear Res 341:232–239CrossRefPubMedGoogle Scholar
  22. Hackett TA (2011) Information flow in the auditory cortical network. Hear Res 271:133–146CrossRefPubMedGoogle Scholar
  23. Haller S, Birbaumer N, Veit R (2009) Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20:696–703CrossRefPubMedGoogle Scholar
  24. Haller S, Kopel R, Jhooti P, et al (2013) Dynamic reconfiguration of human brain functional networks through neurofeedback. NeuroImage 81:243–252.CrossRefPubMedGoogle Scholar
  25. Joly O, Baumann S, Balezeau F, Thiele A, Griffiths TD (2014) Merging functional and structural properties of the monkey auditory cortex. Front Neurosci 8:198CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355:121–125CrossRefPubMedGoogle Scholar
  27. Knudson IM, Melcher JR (2016) Elevated acoustic startle responses in humans: relationship to reduced loudness discomfort level, but not self-report of hyperacusis. J Assoc Res Otolaryngol 17(3):223–235CrossRefPubMedPubMedCentralGoogle Scholar
  28. Langers DRM (2014) Assessment of tonotopically organised subdivisions in human auditory cortex using volumetric and surface-based cortical alignments. Hum Brain Mapp 35:1544–1561CrossRefPubMedGoogle Scholar
  29. Langers DRM, van Dijk P (2012b) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22:2024–2038CrossRefPubMedGoogle Scholar
  30. Langers DRM, Kleine E de (2012a) Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 6:2.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lanting CP, de Kleine E, Langers DRM, van Dijk P (2014) Unilateral tinnitus: changes in connectivity and response lateralization measured with fMRI. PLoS ONE 9(10):e110704CrossRefPubMedPubMedCentralGoogle Scholar
  32. Leaver AM, Renier L, Chevillet MA et al (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69:33–43CrossRefPubMedPubMedCentralGoogle Scholar
  33. Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8:397–406CrossRefPubMedGoogle Scholar
  34. Llano DA, Turner J, Caspary DM (2012) Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J Neurosci 32:16141–16148.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ma W-LD, Hidaka H, May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res 212:9–21CrossRefPubMedGoogle Scholar
  36. Makin TR, Scholz J, Filippini N et al (2013) Phantom pain is associated with preserved structure and function in the former hand area. Nat Commun 4:1570CrossRefPubMedPubMedCentralGoogle Scholar
  37. Makin TR, Scholz J, Henderson Slater D et al (2015) Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 138:2140–2146CrossRefPubMedPubMedCentralGoogle Scholar
  38. Marie D, Jobard G, Crivello F, et al (2013) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220:729–743.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marques JP, Kober T, Krueger G, et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49:1271–1281.CrossRefPubMedGoogle Scholar
  40. Martino FD, Moerel M, Xu J et al (2015) High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex 25:3394–3405CrossRefPubMedGoogle Scholar
  41. Martuzzi R, van der Zwaag W, Farthouat J et al (2012) Human finger somatotopy in areas 3b, 1, and 2: A 7 T fMRI study using a natural stimulus. Hum Brain Mapp 35(1):213–226CrossRefPubMedGoogle Scholar
  42. Maudoux A, Lefebvre P, Cabay J-E et al (2012) Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS ONE 7:e36222CrossRefPubMedPubMedCentralGoogle Scholar
  43. Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA (2000) Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83:1058–1072PubMedGoogle Scholar
  44. Middleton JW, Kiritani T, Pedersen C, et al (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci 108:7601–7606.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Moerel M, De Martino F, Formisano E (2012) Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J Neurosci 32:14205–14216CrossRefPubMedGoogle Scholar
  46. Mühlau M, Rauschecker JP, Oestreicher E, et al (2006) Structural brain changes in tinnitus. Cereb Cortex 16:1283–1288.CrossRefPubMedGoogle Scholar
  47. Newman CW, Jacobson GP, Spitzer JB (1996) Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg 122:143–148CrossRefPubMedGoogle Scholar
  48. Norena A, Micheyl C, Chéry-Croze S, Collet L (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7:358–369CrossRefPubMedGoogle Scholar
  49. Noreña AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153CrossRefPubMedGoogle Scholar
  50. Noreña AJ, Eggermont JJ (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:699–705CrossRefPubMedGoogle Scholar
  51. Okamoto H, Stracke H, Stoll W, Pantev C (2010) Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci 107:1207–1210.CrossRefPubMedGoogle Scholar
  52. Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338(1):17–49CrossRefPubMedGoogle Scholar
  53. Richardson BD, Brozoski TJ, Ling LL, Caspary DM (2012) Targeting inhibitory neurotransmission in tinnitus. Brain Res 1485:77–87CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304.CrossRefPubMedGoogle Scholar
  55. Roberts LE, Eggermont JJ, Caspary DM et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979CrossRefPubMedPubMedCentralGoogle Scholar
  56. Saenz M, Langers DRM (2014) Tonotopic mapping of human auditory cortex. Hear Res 307:42–52CrossRefPubMedGoogle Scholar
  57. Salloum RH, Sandridge S, Patton DJ, Stillitano G, Dawson G, Niforatos J, Santiago L, Kaltenbach JA (2016) Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test. Hear Res 331:92–100CrossRefPubMedGoogle Scholar
  58. Salomon R, Darulova J, Narsude M, van der Zwaag W (2014) Comparison of an 8-channel and a 32-channel coil for high-resolution FMRI at 7 T. Brain Topogr 27:209–212CrossRefPubMedGoogle Scholar
  59. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2010) Mapping human somatosensory cortex in individual subjects with 7 T functional MRI. J Neurophysiol 103:2544–2556CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457CrossRefPubMedGoogle Scholar
  61. Schecklmann M, Vielsmeier V, Steffens T et al (2012) Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLoS ONEGoogle Scholar
  62. Scheffler K, Bilecen D, Schmid N et al (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex 8:156–163CrossRefPubMedGoogle Scholar
  63. Schmidt SA, Akrofi K, Carpenter-Thompson JR, Husain FT (2013) Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS ONE 8:e76488CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schneider P, Andermann M, Wengenroth M, et al (2009) Reduced volume of Heschl’s gyrus in tinnitus. NeuroImage 45:927–939.CrossRefPubMedGoogle Scholar
  65. Schreiner CE, Polley DB (2014) Auditory map plasticity: Diversity in causes and consequences. Curr Opin Neurobiol 24:143–156CrossRefPubMedGoogle Scholar
  66. Sedley W, Teki S, Kumar S, Barnes GR, Bamiou D-E, Griffiths TD (2012) Signle-subject oscillatory gamma responses in tinnitus. Brain 135(10):3089–3100CrossRefPubMedPubMedCentralGoogle Scholar
  67. Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38CrossRefPubMedGoogle Scholar
  68. Seydell-Greenwald A, Leaver AM, Turesky TK et al (2012) Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res 1485:22–39CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sheldrake J, Diehl PU, Schaette R (2015) Audiometric characteristics of hyperacusis patients. Front Neurol 15(6):105Google Scholar
  70. Tass PA, Adamchic I, Freund H-J et al (2012) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:137–159PubMedGoogle Scholar
  71. Thomas JM, Huber E, Stecker GC, et al (2015) Population receptive field estimates of human auditory cortex. NeuroImage 105:428–439.CrossRefPubMedGoogle Scholar
  72. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107CrossRefPubMedGoogle Scholar
  73. Van De Ville D, Jhooti P, Haas T, et al (2012) Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks. NeuroImage 63:1775–1781.CrossRefGoogle Scholar
  74. van der Zwaag W, Francis S, Head K, et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47:1425–1434.CrossRefPubMedGoogle Scholar
  75. van der Zwaag W, Gentile G, Gruetter R, et al (2011) Where sound position influences sound object representations: A 7-T fMRI study. NeuroImage 54:1803–1811.CrossRefPubMedGoogle Scholar
  76. van der Zwaag W, Kusters R, Magill A, et al (2013) Digit somatotopy in the human cerebellum: a 7 T fMRI study. NeuroImage 67:354–362.CrossRefPubMedGoogle Scholar
  77. van der Zwaag W, Schäfer A, Marques JP et al (2015) Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed 29(9):1274–1288CrossRefPubMedGoogle Scholar
  78. Weisz N, Müller S, Schlee W et al (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–1484CrossRefPubMedGoogle Scholar
  79. Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 T. NeuroImage 37:1161–1177.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yang S, Weiner BD, Zhang LS, et al (2011) Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci 108:14974–14979.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
  3. 3.Spinoza Centre for NeuroimagingRoyal Netherlands Academy for Arts and SciencesAmsterdamNetherlands
  4. 4.Center for Biomedical ImagingUniversity of LausanneLausanneSwitzerland
  5. 5.Service of Neuropsychology and Neurorehabilitation, Department of Clinical Neurosciences Lausanne University HospitalLausanneSwitzerland
  6. 6.Department of Otorhinolaryngology, Head and Neck SurgeryLausanne University HospitalLausanneSwitzerland
  7. 7.Neuroimaging Research Lab (LREN), Department of Clinical NeurosciencesLausanne University HospitalLausanneSwitzerland

Personalised recommendations