Advertisement

Brain Topography

, Volume 30, Issue 1, pp 77–86 | Cite as

Somatosensory Brain Function and Gray Matter Regional Volumes Differ According to Exercise History: Evidence from Monozygotic Twins

  • Pekka Hautasaari
  • Andrej M. Savić
  • Otto Loberg
  • Eini Niskanen
  • Jaakko Kaprio
  • Urho M. Kujala
  • Ina M. TarkkaEmail author
Original Paper

Abstract

Associations between long-term physical activity and cortical function and brain structure are poorly known. Our aim was to assess whether brain functional and/or structural modulation associated with long-term physical activity is detectable using a discordant monozygotic male twin pair design. Nine monozygotic male twin pairs were carefully selected for an intrapair difference in their leisure-time physical activity of at least three years duration (mean age 34 ± 1 years). We registered somatosensory mismatch response (SMMR) in EEG to electrical stimulation of fingers and whole brain MR images. We obtained exercise history and measured physical fitness and body composition. Equivalent electrical dipole sources of SMMR as well as gray matter (GM) voxel counts in regions of interest indicated by source analysis were evaluated. SMMR dipolar source strengths differed between active and inactive twins within twin pairs in postcentral gyrus, medial frontal gyrus and superior temporal gyrus and in anterior cingulate (AC) GM voxel counts differed similarly. Compared to active twins, their inactive twin brothers showed greater dipole strengths in short periods of the deviant-elicited SMMR and larger AC GM voxel counts. Stronger activation in early unattended cortical processing of the deviant sensory signals in inactive co-twins may imply less effective gating of somatosensory information in inactive twins compared to their active brothers. Present findings indicate that already in 30′s long-term physical activity pattern is linked with specific brain indices, both in functional and structural domains.

Keywords

Twin research Brain electrophysiology Somatosensory cortex Mismatch negativity Brain structure Physical activity 

Notes

Acknowledgments

Authors wish to thank the participants of the study and laboratory personnel and students at the University of Jyväskylä who contributed to this study. Support from the Juho Vainio Foundation (Helsinki) is acknowledged (to I M Tarkka). Data collection in the twin cohort has been supported by National Institute of Alcohol Abuse and Alcoholism (Grants AA-12502, AA-00145, and AA-09203 to R J Rose) and the Academy of Finland (Grants 100499, 265240, 263278 and 264146 to J Kaprio).

References

  1. Akatsuka K, Wasaka T, Nakata H, Inui K, Hoshiyama M, Kakigi R (2005) Mismatch responses related to temporal discrimination of somatosensory stimulation. Clin Neurophysiol 116(8):1930–1937. doi: 10.1016/j.clinph.2005.04.021 CrossRefPubMedGoogle Scholar
  2. Akatsuka K, Wasaka T, Nakata H, Kida T, Kakigi R (2007) The effect of stimulus probability on the somatosensory mismatch field. Exp Brain Res 181(4):607–614. doi: 10.1007/s00221-007-0958-4 CrossRefPubMedGoogle Scholar
  3. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484CrossRefPubMedGoogle Scholar
  4. Bak N, Glenthoj BY, Rostrup E, Larsson HB, Oranje B (2011) Source localization of sensory gating: a combined EEG and fMRI study in healthy volunteers. NeuroImage 54(4):2711–2718. doi: 10.1016/j.neuroimage.2010.11.039 CrossRefPubMedGoogle Scholar
  5. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Hakkinen K, Rankinen T (2012) Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS ONE 7(5):e37887. doi: 10.1371/journal.pone.0037887 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306CrossRefPubMedGoogle Scholar
  7. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022. doi: 10.1073/pnas.1015950108 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fox KC, Nijeboer S, Dixon ML, Floman JL, Ellamil M, Rumak SP, Christoff K (2014) Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci Biobehav Rev 43:48–73. doi: 10.1016/j.neubiorev.2014.03.016 CrossRefPubMedGoogle Scholar
  9. Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27(6):627–640CrossRefPubMedGoogle Scholar
  10. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9(1):58–65. doi: 10.1038/nrn2298 CrossRefPubMedGoogle Scholar
  11. Jensen KS, Oranje B, Wienberg M, Glenthoj BY (2008) The effects of increased serotonergic activity on human sensory gating and its neural generators. Psychopharmacology 196(4):631–641. doi: 10.1007/s00213-007-1001-y CrossRefPubMedGoogle Scholar
  12. Julkunen P, Kononen M, Maatta S, Tarkka IM, Hiekkala SH, Saisanen L, Jakala P (2016) Longitudinal study on modulated corticospinal excitability throughout recovery in supratentorial stroke. Neurosci Lett 617:88–93. doi: 10.1016/j.neulet.2016.02.014 CrossRefPubMedGoogle Scholar
  13. Kaprio J, Pulkkinen L, Rose RJ (2002) Genetic and environmental factors in health-related behaviors: studies on finnish twins and twin families. Twin Res 5(5):366–371. doi: 10.1375/136905202320906101 CrossRefPubMedGoogle Scholar
  14. Kekoni J, Hämäläinen H, Saarinen M, Grohn J, Reinikainen K, Lehtokoski A, Näätänen R (1997) Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biol Psychol 46(2):125–142CrossRefPubMedGoogle Scholar
  15. Kujala UM, Kaprio J, Sarna S, Koskenvuo M (1998) Relationship of leisure-time physical activity and mortality: the finnish twin cohort. JAMA 279(6):440–444CrossRefPubMedGoogle Scholar
  16. Leskinen T, Waller K, Mutikainen S, Aaltonen S, Ronkainen PH, Alen M, Kujala UM (2009) Effects of 32-year leisure time physical activity discordance in twin pairs on health (TWINACTIVE study): aims, design and results for physical fitness. Twin Res Hum Genet 12(1):108–117. doi: 10.1375/twin.12.1.108 CrossRefPubMedGoogle Scholar
  17. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3):1233–1239CrossRefPubMedGoogle Scholar
  18. Maldjian JA, Laurienti PJ, Burdette JH (2004) Precentral gyrus discrepancy in electronic versions of the talairach atlas. NeuroImage 21(1):450–455CrossRefPubMedGoogle Scholar
  19. Naatanen R, Kahkonen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12(1):125–135. doi: 10.1017/S1461145708009322 CrossRefPubMedGoogle Scholar
  20. Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590. doi: 10.1016/j.clinph.2007.04.026 CrossRefPubMedGoogle Scholar
  21. Noback C, Strominger N, Demarest R, Ruggiero D (2005) The human nervous system, structure and function (Sixth, Edition edn. Humana Press, Totowa, New JerseyGoogle Scholar
  22. Nudo RJ (2013) Recovery after brain injury: mechanisms and principles. Front Hum Neurosci 7:887. doi: 10.3389/fnhum.2013.00887 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nudo RJ, McNeal D (2013) Plasticity of cerebral functions. Handb Clin Neurol 110:13–21. doi: 10.1016/B978-0-444-52901-5.00002-2 CrossRefPubMedGoogle Scholar
  24. Popovich C, Staines WR (2015) Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task. Behav Brain Res 281:267–275. doi: 10.1016/j.bbr.2014.12.045 CrossRefPubMedGoogle Scholar
  25. Reiner M, Niermann C, Jekauc D, Woll A (2013) Long-term health benefits of physical activity—a systematic review of longitudinal studies. BMC Public Health 13:1. doi: 10.1186/1471-2458-13-813 CrossRefGoogle Scholar
  26. Rottensteiner M, Leskinen T, Niskanen E, Aaltonen S, Mutikainen S, Wikgren J, Kujala UM (2015) Physical activity, fitness, glucose homeostasis, and brain morphology in twins. Med Sci Sports Exerc 47(3):509–518. doi: 10.1249/MSS.0000000000000437 CrossRefPubMedGoogle Scholar
  27. Ruscheweyh R, Willemer C, Kruger K, Duning T, Warnecke T, Sommer J, Floel A (2011) Physical activity and memory functions: an interventional study. Neurobiol Aging 32(7):1304–1319. doi: 10.1016/j.neurobiolaging.2009.08.001 CrossRefPubMedGoogle Scholar
  28. Spackman LA, Boyd SG, Towell A (2007) Effects of stimulus frequency and duration on somatosensory discrimination responses. Exp Brain Res 177(1):21–30. doi: 10.1007/s00221-006-0650-0 CrossRefPubMedGoogle Scholar
  29. Strömmer JM, Tarkka IM, Astikainen P (2014) Somatosensory mismatch response in young and elderly adults. Front Aging Neurosci 6:293. doi: 10.3389/fnagi.2014.00293 PubMedPubMedCentralGoogle Scholar
  30. Talati A, Hirsch J (2005) Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what,” “when,” and “where” related information: an fMRI study. J Cogn Neurosci 17(7):981–993. doi: 10.1162/0898929054475226 CrossRefPubMedGoogle Scholar
  31. Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10(4):513–519CrossRefPubMedGoogle Scholar
  32. Tarkka IM, Könönen M, Pitkänen K, Sivenius J, Mervaala E (2008) Alterations in cortical excitability in chronic stroke after constraint-induced movement therapy. Neurol Res 30(5):504–510CrossRefPubMedGoogle Scholar
  33. Tarkka IM, Savic A, Pekkola E, Rottensteiner M, Leskinen T, Kaprio J, Kujala UM (2016) Long-term physical activity modulates brain processing of somatosensory stimuli: evidence from young male twins. Biol Psychol 117:1–7. doi: 10.1016/j.biopsycho.2016.02.001 CrossRefPubMedGoogle Scholar
  34. Tesarz J, Gerhardt A, Schommer K, Treede RD, Eich W (2013) Alterations in endogenous pain modulation in endurance athletes: an experimental study using quantitative sensory testing and the cold-pressor task. Pain 154(7):1022–1029. doi: 10.1016/j.pain.2013.03.014 CrossRefPubMedGoogle Scholar
  35. Waller K, Kaprio J, Kujala UM (2008) Associations between long-term physical activity, waist circumference and weight gain: a 30-year longitudinal twin study. Int J Obes 32(2):353–361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pekka Hautasaari
    • 1
  • Andrej M. Savić
    • 2
    • 3
  • Otto Loberg
    • 4
  • Eini Niskanen
    • 5
  • Jaakko Kaprio
    • 6
    • 7
    • 8
  • Urho M. Kujala
    • 1
  • Ina M. Tarkka
    • 1
    Email author
  1. 1.Department of Health SciencesUniversity of JyväskyläJyväskyläFinland
  2. 2.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Tecnalia Serbia Ltd.BelgradeSerbia
  4. 4.Department of PsychologyUniversity of JyväskyläJyväskyläFinland
  5. 5.Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  6. 6.Department of Public HealthUniversity of HelsinkiHelsinkiFinland
  7. 7.National Institute for Health and WelfareHelsinkiFinland
  8. 8.Institute for Molecular Medicine (FIMM)University of HelsinkiHelsinkiFinland

Personalised recommendations