Brain Topography

, Volume 29, Issue 4, pp 572–589 | Cite as

The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy

  • Victoria Montes-Restrepo
  • Evelien Carrette
  • Gregor Strobbe
  • Stefanie Gadeyne
  • Stefaan Vandenberghe
  • Paul Boon
  • Kristl Vonck
  • Pieter van Mierlo
Original Paper


We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.


EEG source imaging Skull modeling Refractory epilepsy Forward problem Inverse problem 



This work was carried out using the STEVIN Supercomputer Infrastructure at Ghent University, funded by Ghent University, the Flemish Supercomputer Center (VSC), the Hercules Foundation and the Flemish Government – department EWI


  1. Akhtari M, Bryant H, Mamelak A, Flynn E, Heller L, Shih J, Mandelkern M, Matlachov A, Ranken D, Best E et al (2002) Conductivities of three-layer live human skull. Brain Topography 14(3):151–167CrossRefPubMedGoogle Scholar
  2. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851CrossRefPubMedGoogle Scholar
  3. Aydin Ü, Vorwerk J, Küpper P, Heers M, Kugel H, Galka A, Hamid L, Wellmer J, Kellinghaus C, Rampp S et al (2014) Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model. PloS One 9(3):e93154CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aydin U, Vorwerk J, Dümpelmann M, Küpper P, Kugel H, Wellmer J, Kellinghaus C, Haueisen J, Rampp S, Stefan H, Wolters CH (2015) Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis. PloS ONE. doi: 10.1371/journal.pone.0118753 Google Scholar
  5. Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45(6):621–631CrossRefPubMedGoogle Scholar
  6. Bast T, Boppel T, Rupp A, Harting I, Hoechstetter K, Fauser S, Schulze-Bonhage A, Scherg M et al (2006) Noninvasive source localization of interictal EEG spikes: effects of signal-to-noise ratio and averaging. J Clin Neurophysiol 23(6):487–497CrossRefPubMedGoogle Scholar
  7. Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMedGoogle Scholar
  8. Birot G, Spinelli L, Vulliémoz S, Mégevand P, Brunet D, Seeck M, Michel CM (2014) Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin 5:77–83CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boon P, D’Havé M, Vanrumste B, Van Hoey G, Vonck K, Van Walleghem P, Caemaert J, Achten E, De Reuck J (2002) Ictal source localization in presurgical patients with refractory epilepsy. J Clin Neurophysiol 19(5):461–8, URL
  10. Brodbeck V, Spinelli L, Lascano A, Wissmeier M, Vargas M, Vulliemoz S, Pollo C, Schaller K, Michel C, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134(10):2887–2897CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chitoku S, Otsubo H, Ichimura T, Saigusa T, Ochi A, Shirasawa A, Ki Kamijo, Yamazaki T, Pang E, Rutka JT et al (2003) Characteristics of dipoles in clustered individual spikes and averaged spikes. Brain Dev 25(1):14–21CrossRefPubMedGoogle Scholar
  12. Cho JH, Vorwerk J, Wolters CH, Knösche TR (2015) Influence of the head model on EEG and MEG source connectivity analysis. Neuroimage 110:60–77CrossRefPubMedGoogle Scholar
  13. Coutin-Churchman PE, Wu JY, Chen LL, Shattuck K, Dewar S, Nuwer MR (2012) Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci. Clin Neurophysiol 123(3):471–485CrossRefPubMedGoogle Scholar
  14. Crevecoeur G, Montes-Restrepo V, Staelens S (2012) Subspace electrode selection methodology for the reduction of the effect of uncertain conductivity values in the EEG dipole localization: A simulation study using a patient-specific head model. Phys Med Biol 57:1963–1986CrossRefPubMedGoogle Scholar
  15. Dannhauer M, Lanfer B, Wolters C, Knösche T (2011) Modeling of the human skull in EEG source analysis. Human Brain Mapp 32(9):1383–1399. doi: 10.1002/hbm.21114 CrossRefGoogle Scholar
  16. Despotovic I, Cherian PJ, Vos M, Hallez H, Deburchgraeve W, Govaert P, Lequin M, Visser GH, Swarte RM, Vansteenkiste E et al (2013) Relationship of EEG sources of neonatal seizures to acute perinatal brain lesions seen on MRI: a pilot study. Human Brain Mapp 34(10):2402–2417CrossRefGoogle Scholar
  17. Ebersole JS (2000) Noninvasive localization of epileptogenic foci by EEG source modeling. Epilepsia 41(s3):S24–S33CrossRefPubMedGoogle Scholar
  18. Engel JJ, Van Ness P, Rasmussen T, Ojemann L (1993) Outcome with respect to epileptic seizures. In: Engel JJ (ed) Surgical treatment of the epilepsies, Raven Press, New York, pp 609–621Google Scholar
  19. Gonçalves S, de Munck J, Verbunt J, Bijma F, Heethaar R, Lopes da Silva F (2003) In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans Biomed Eng 50(6):754–767CrossRefPubMedGoogle Scholar
  20. Hallez H, Vanrumste B, Hese P, D’Asseler Y, Lemahieu I, Walle R (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787–3806CrossRefPubMedGoogle Scholar
  21. Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri K, Fabri S, Van Huffel S, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabil 4(1):46CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23(6):728–739CrossRefPubMedGoogle Scholar
  23. Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC (2013) Automated MRI segmentation for individualized modeling of current flow in the human head. J Neural Eng 10(6):066004CrossRefPubMedGoogle Scholar
  24. Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A (1999) The need for correct realistic geometry in the inverse EEG problem. IEEE Trans Biomed Eng 46(11):1281–1287. doi: 10.1109/10.797987 CrossRefPubMedGoogle Scholar
  25. Huppertz HJ, Hof E, Klisch J, Wagner M, Lücking CH, Kristeva-Feige R (2001) Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. NeuroImage 13(1):15–28CrossRefPubMedGoogle Scholar
  26. Kaiboriboon K, Lüders HO, Hamaneh M, Turnbull J, Lhatoo SD (2012) EEG source imaging in epilepsy - practicalities and pitfalls. Nat Rev Neurol 8(9):498–507CrossRefPubMedGoogle Scholar
  27. Knösche T (1997) Solutions of the Neuroelectromagnetic Inverse Problem - an Evaluation Study. PhD thesis, University of Twente, NetherlandsGoogle Scholar
  28. Kobayashi K, Yoshinaga H, Ohtsuka Y, Gotman J (2005) Dipole modeling of epileptic spikes can be accurate or misleading. Epilepsia 46(3):397–408CrossRefPubMedGoogle Scholar
  29. Lanfer B, Scherg M, Dannhauer M, Knösche T, Burger M, Wolters C (2012) Influences of skull segmentation inaccuracies on EEG source analysis. NeuroImage 62(1):418–431CrossRefPubMedGoogle Scholar
  30. Lantz G, de Peralta RG, Spinelli L, Seeck M, Michel C (2003a) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114(1):63–69CrossRefPubMedGoogle Scholar
  31. Lantz G, Spinelli L, Seeck M, de Peralta Menendez RG, Sottas CC, Michel CM (2003b) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 20(5):311–319CrossRefPubMedGoogle Scholar
  32. Lau S, Flemming L, Haueisen J (2014) Magnetoencephalography signals are influenced by skull defects. Clin Neurophysiol 125(8):1653–1662CrossRefPubMedGoogle Scholar
  33. Law S (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109CrossRefPubMedGoogle Scholar
  34. Lew S, Wolters C, Anwander A, Makeig S, MacLeod R (2009) Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Human Brain Mapp 30(9):2862–2878CrossRefGoogle Scholar
  35. Meckes-Ferber S, Roten A, Kilpatrick C, O’Brien TJ (2004) EEG dipole source localisation of interictal spikes acquired during routine clinical video-EEG monitoring. Clin Neurophysiol 115(12):2738–2743CrossRefPubMedGoogle Scholar
  36. Mégevand P, Spinelli L, Genetti M, Brodbeck V, Momjian S, Schaller K, Michel CM, Vulliemoz S, Seeck M (2014) Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry 85(1):38–43CrossRefPubMedGoogle Scholar
  37. Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110(6):1013–1028CrossRefPubMedGoogle Scholar
  38. Michel CM, Lantz G, Spinelli L, De Peralta RG, Landis T, Seeck M (2004) 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 21(2):71–83CrossRefPubMedGoogle Scholar
  39. Montes-Restrepo V, van Mierlo P, Strobbe G, Staelens S, Vandenberghe S, Hallez H (2014) Influence of skull modeling approaches on EEG source localization. Brain Topogr 27(1):95–111CrossRefPubMedGoogle Scholar
  40. Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39(6):541–557CrossRefPubMedGoogle Scholar
  41. Oliva M, Meckes-Ferber S, Roten A, Desmond P, Hicks RJ, O’Brien TJ (2010) EEG dipole source localization of interictal spikes in non-lesional TLE with and without hippocampal sclerosis. Epilepsy Res 92(2):183–190CrossRefPubMedGoogle Scholar
  42. Park CJ, Seo JH, Kim D, Abibullaev B, Kwon H, Lee YH, Kim MY, Kim K, Kim JS, Joo EY, et al. (2015) EEG Source Imaging in Partial Epilepsy in Comparison with Presurgical Evaluation and Magnetoencephalography. J Clin Neurol 11(4): 319–330Google Scholar
  43. Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49(2):201–218CrossRefPubMedGoogle Scholar
  44. Plummer C, Wagner M, Fuchs M, Harvey A, Cook M (2010) Dipole versus distributed EEG source localization for single versus averaged spikes in focal epilepsy. Journal of Clinical Neurophysiology 27(3):141–162CrossRefPubMedGoogle Scholar
  45. Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. Journal of Computer Assisted Tomography 27(6):825–846CrossRefPubMedGoogle Scholar
  46. Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012) Age-specific CT and MRI templates for spatial normalization. NeuroImage 61(4):957–65CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124(9):1683–1700CrossRefPubMedGoogle Scholar
  48. Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolters C (2009) EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399–410CrossRefPubMedGoogle Scholar
  49. Ryynänen O, Hyttinen J, Malmivuo J (2006) Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull. IEEE Transactions on Biomedical Engineering 53(9):1851–1858CrossRefPubMedGoogle Scholar
  50. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, PhiladelphiaGoogle Scholar
  51. Strobbe G, van Mierlo P, De Vos M, Mijović B, Hallez H, Van Huffel S, López JD, Vandenberghe S (2014) Bayesian model selection of template forward models for EEG source reconstruction. Neuroimage 93:11–22CrossRefPubMedGoogle Scholar
  52. Vanrumste B, Van Hoey G, Van de Walle R, D’Havè M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topography 14(2):83–92CrossRefPubMedGoogle Scholar
  53. Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMedGoogle Scholar
  54. Wennberg R, Cheyne D (2014) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clinical Neurophysiology 125(5):886–902CrossRefPubMedGoogle Scholar
  55. Ziegler E, Chellappa SL, Gaggioni G, Ly JQ, Vandewalle G, André E, Geuzaine C, Phillips C (2014) A finite-element reciprocity solution for EEG forward modeling with realistic individual head models. NeuroImage 103:542–551CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Victoria Montes-Restrepo
    • 1
  • Evelien Carrette
    • 2
  • Gregor Strobbe
    • 1
  • Stefanie Gadeyne
    • 2
  • Stefaan Vandenberghe
    • 1
  • Paul Boon
    • 2
  • Kristl Vonck
    • 2
  • Pieter van Mierlo
    • 1
  1. 1.Medical Image and Signal Processing (MEDISIP)Ghent University–iMinds Medical IT DepartmentGhentBelgium
  2. 2.Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and NeuropsychologyGhent University HospitalGhentBelgium

Personalised recommendations