Brain Topography

, Volume 29, Issue 4, pp 491–505 | Cite as

Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement

  • Ingrida Antonova
  • Claudia van Swam
  • Daniela Hubl
  • Thomas Dierks
  • Inga Griskova-Bulanova
  • Thomas Koenig
Original Paper


Reaction time (RT), the most common measure of CNS efficiency, shows intra- and inter-individual variability. This may be accounted for by hemispheric specialization, individual neuroanatomy, and transient functional fluctuations between trials. To explore RT on these three levels, ERPs were measured in a visual 4-choice RT task with lateralized stimuli (left lateral, left middle, right middle, and right lateral) in 28 healthy right-handed subjects. We analyzed behavioral data, ERP microstates (MS), N1 and P3 components, and trial-by-trial variance. Across subjects, the N1 component was contralateral to the stimulation side. N1-MSs were stronger over the left hemisphere, and middle stimulation evoked stronger activation than lateral stimulation in both hemispheres. The P3 was larger for the right visual field stimulation. RTs were shorter for the right visual hemifield stimulation/right hand responses. Within subjects, covariance analysis of single trial ERPs with RTs showed consistent lateralized predictors of RT over the motor cortex (MC) in the 112–248 ms interval. Decreased RTs were related to negativity over the MC contralateral to the stimulation side, an effect that could be interpreted as the lateralized readiness potential (LRP), and which was strongest for right side stimulation. The covariance analysis linking individual mean RTs and individual mean ERPs showed a frontal negativity and an occipital positivity correlating with decreased RTs in the 212–232 ms interval. We concluded that a particular RT is a composite measure that depends on the appropriateness of the motor preparation to a particular response and on stimulus lateralization that selectively involves a particular hemisphere.


Visuospatial processing Choice reaction time task N1 P3 Lateralization Interindividual and intraindividual variance 



I. A. acknowledges support from the following sources: “Promotion of Student Scientific Activities” (VP1-3.1-ŠMM-01-V-02-003) from the Research Council of Lithuania, funded by the Republic of Lithuania and the European Social Fund under the 2007–2013 Human Resources Development Operational Programme’s priority 3. SCIEX-NMS Scientific Exchange Programme between Switzerland and the New Member States of the EU, Project 13.048.


  1. Aglioti S, Berlucchi G, Pallini R, Rossi GF, Tassinari G (1993) Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after callosotomy and in callosal agenesis. Exp Brain Res 95(1):151–165PubMedCrossRefGoogle Scholar
  2. Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38(3):304–312PubMedCrossRefGoogle Scholar
  3. Annett M, Annett J (1979) Individual differences in right and left reaction time. Br J Psychol 70(3):393–404PubMedCrossRefGoogle Scholar
  4. Barthelemy S, Boulinguez P (2001) Manual reaction time asymmetries in human subjects: the role of movement planning and attention. Neurosci Lett 315(1–2):41–44PubMedCrossRefGoogle Scholar
  5. Basso D, Vecchi T, Kabiri LA, Baschenis I, Boggiani E, Bisiacchi PS (2006) Handedness effects on interhemispheric transfer time: a TMS study. Brain Res Bull 70(3):228–232PubMedCrossRefGoogle Scholar
  6. Bestelmeyer PEG, Carey DP (2004) Processing biases towards the preferred hand: valid and invalid cueing of left-versus right-hand movements. Neuropsychologia 42(9):1162–1167PubMedCrossRefGoogle Scholar
  7. Bocci T, Pietrasanta M, Caleo M, Sartucci F (2014) Visual callosal connections: role in visual processing in healthy and disease. Rev Neurosci 25(1):113–127PubMedCrossRefGoogle Scholar
  8. Boy F, Sumner P (2014) Visibility predicts priming within but not between people: a cautionary tale for studies of cognitive individual differences. J Exp Psychol Gen 143(3):1011–1025PubMedCrossRefGoogle Scholar
  9. Büchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14(9):945–951PubMedCrossRefGoogle Scholar
  10. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126(9):2093–2107PubMedCrossRefGoogle Scholar
  11. Corballis MC (2014) Left brain, right brain: facts and fantasies. PLoS Biol 12(1):e1001767. doi: 10.1371/journal.pbio.1001767 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Crow TJ, Chance SA, Priddle TH, Radua J, James AC (2013) Laterality interacts with sex across schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res 210(3):1232–1244PubMedCrossRefGoogle Scholar
  13. Donchin E (1981) Presidential address, 1980. Surprise!… Surprise? Psychophysiology 18(5):493–513PubMedCrossRefGoogle Scholar
  14. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11(3):357–374CrossRefGoogle Scholar
  15. Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120(11):2013–2028PubMedCrossRefGoogle Scholar
  16. Frecska E, Symer C, White K, Piscani K, Kulcsar Z (2004) Perceptional and executive deficits of chronic schizophrenic patients in attentional and intentional tasks. Psychiatry Res 126(1):63–75PubMedCrossRefGoogle Scholar
  17. Friedman D (1984) P300 and slow wave: the effects of reaction time quartile. Biol Psychol 18(1):49–71PubMedCrossRefGoogle Scholar
  18. Fu S, Fedota JR, Greenwood PM, Parasuraman R (2010) Dissociation of visual C1 and P1 components as a function of attention load: an event-related potential study. Biol Psychol 85(1):171–178PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gajewski PD, Stoerig P, Falkenstein M (2008) ERP: correlates of response selection in a response conflict paradigm. Brain Res 1189:127–134PubMedCrossRefGoogle Scholar
  20. Gazzaniga M (2000) Cerebral specialization and interhemispheric communication. Brain 123(7):1293–1326PubMedCrossRefGoogle Scholar
  21. Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioral and cognitive controls. Brain 122(6):1093–1106PubMedCrossRefGoogle Scholar
  22. Hackley SA, Schankin A, Wohlschlaerger A, Wascher E (2007) Localization of temporal preparation effects via trisected reaction time. Psychophysiology 44(2):334–338PubMedCrossRefGoogle Scholar
  23. Han S, Weaver JA, Murray SO, Kang X, Yund EW, Woods DL (2002) Hemispheric asymmetry in global/local processing: effects of stimulus position and spatial frequency. NeuroImage 17(3):1290–1299PubMedCrossRefGoogle Scholar
  24. Heim S, Eulitz C, Elbert T (2003a) Altered hemispheric asymmetry of auditory N100m in adults with developmental dyslexia. NeuroReport 14(3):501–504PubMedCrossRefGoogle Scholar
  25. Heim S, Eulitz C, Elbert T (2003b) Altered hemispheric asymmetry of auditory P100m in dyslexia. Eur J Neurosci 17(8):1715–1722PubMedCrossRefGoogle Scholar
  26. Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75(6):511–527PubMedCrossRefGoogle Scholar
  27. Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, Takeoka M, Tager-Flusberg H, Caviness VS (2002) Abnormal asymmetry in language association cortex in autism. Ann Neurol 52(5):588–596PubMedCrossRefGoogle Scholar
  28. Herbert MR, Ziegler DA, Deutsch K, O’Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Makris N, Caviness VS Jr (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128(Pt 1):213–226PubMedGoogle Scholar
  29. Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95(3):781–787PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61PubMedCrossRefGoogle Scholar
  31. Iacoboni M, Zaidel E (1995) Channels of the corpus callosum: evidence from simple reaction times to lateralized flashes in the normal and the split brain. Brain 118(Pt 3):779–788PubMedCrossRefGoogle Scholar
  32. Iacoboni M, Fried I, Zaidel E (1994) Callosal transmission time before and after partial commissurotomy. NeuroReport 5(18):2521–2524PubMedCrossRefGoogle Scholar
  33. Ipata A, Girelli M, Miniussi C, Marzi CA (1997) Interhemispheric transfer of visual information in humans: the role of different callosal channels. Arch Ital Biol 135(2):169–182PubMedGoogle Scholar
  34. Jenner AR, Rosen GD, Galaburda AM (1999) Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains. Ann Neurol 46(2):189–196PubMedCrossRefGoogle Scholar
  35. Johannes S, Münte TF, Heinze HJ, Mangun GR (1995) Luminance and spatial attention effects on early visual processing. Brain Res Cogn Brain Res 2(3):189–205PubMedCrossRefGoogle Scholar
  36. Kalyanshetti SB, Vastrad BC (2013) Effect of handedness on visual, auditory and cutaneous reaction times in normal subjects. Al Ameen J Med Sci 6(3):278–280Google Scholar
  37. Kelly SP, O’Connell RG (2013) Internal and external influences on the rate of sensory evidence accumulation in the human brain. J Neurosci 33(50):19434–19441PubMedCrossRefGoogle Scholar
  38. Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9(3):269–277PubMedCrossRefGoogle Scholar
  39. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147PubMedCrossRefGoogle Scholar
  40. Koenig T, Melie-García L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23(3):233–242PubMedCrossRefGoogle Scholar
  41. Koenig T, Melie-García L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 119(6):1262–1270PubMedCrossRefGoogle Scholar
  42. Koenig T, Kottlow M, Stein M, Melie García L (2011) Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci. doi: 10.1155/2011/938925 PubMedPubMedCentralGoogle Scholar
  43. Koenig T, Stein M, Grieder M, Kottlow M (2014) A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topogr 27(1):72–83PubMedCrossRefGoogle Scholar
  44. Kolev V, Falkenstein M, Yordanova J (2006) Motor-response generation as a source of aging-related behavioral slowing in choice-reaction task. Neurobiol Aging 27:1719–1730PubMedCrossRefGoogle Scholar
  45. Konrad A, Vucurevic G, Musso F, Stoeter P, Winterer G (2009) Correlation of brain white matter diffusion anisotropy and mean diffusivity with reaction time in an oddball task. Neuropsychobiology 60(2):55–66PubMedCrossRefGoogle Scholar
  46. Leuthold H (2011) The Simon effect in cognitive electrophysiology: a short review. Acta Psychol (Amst) 136(2):203–211CrossRefGoogle Scholar
  47. Liu Z, Zhang N, Chen W, He B (2009) Mapping the bilateral visual integration by EEG and fMRI. NeuroImage 46(4):989–997PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lo YC, Soong WT, Gau SSF, Wu YY, Lai MC, Yeh FC, Chiang WY, Kuo LW, Jaw FS, Tseng WY (2011) The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res 192(1):60–66PubMedCrossRefGoogle Scholar
  49. Løberg EM, Hugdahl K, Green MF (1999) Hemispheric asymmetry in schizophrenia: a “Dual deficits” model. Biol Psychiatry 45(1):76–81PubMedCrossRefGoogle Scholar
  50. Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542PubMedCrossRefGoogle Scholar
  51. Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage 21(3):1174–1181PubMedCrossRefGoogle Scholar
  52. Madsen KS, Baaré WFC, Skimminge A, Vestergaard M, Siebner HR, Jernigan TL (2011) Brain microstructural correlates of visuospatial choice reaction time in children. NeuroImage 58(4):1090–1100PubMedCrossRefGoogle Scholar
  53. Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074PubMedCrossRefGoogle Scholar
  54. Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioral tool to study interhemispheric transmission in humans. Brain Res Bull 50(5–6):421–422PubMedCrossRefGoogle Scholar
  55. Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric?: evidence from a meta-analysis. Neuropsychologia 29(12):1163–1177PubMedCrossRefGoogle Scholar
  56. Masaki H, Wild-Wall N, Sangals J, Sommer W (2004) The functional locus of the lateralized readiness potential. Psychophysiology 41(2):220–230PubMedCrossRefGoogle Scholar
  57. Mooshagian E, Iacoboni M, Zaidel E (2008) The role of task history in simple reaction time to lateralized light flashes. Neuropsychologia 46(2):659–664PubMedCrossRefGoogle Scholar
  58. Mooshagian E, Iacoboni M, Zaidel E (2009) Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum. Neuropsychologia 47(3):933–937PubMedCrossRefGoogle Scholar
  59. Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39(8):828–844PubMedCrossRefGoogle Scholar
  60. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264PubMedCrossRefGoogle Scholar
  61. Nielsen JA, Zielinski BA, Ferguson MA, Lainhart JE, Anderson JS (2013) An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One 8(8):e71275. doi: 10.1371/journal.pone.0071275 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120(Pt 3):515–533PubMedCrossRefGoogle Scholar
  63. Nobre AC, Sebestyen GN, Miniussi C (2000) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38(7):964–974PubMedCrossRefGoogle Scholar
  64. O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat Neurosci 15(12):1729–1735PubMedCrossRefGoogle Scholar
  65. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburg inventory. Neuropsychologia 9(1):97–113PubMedCrossRefGoogle Scholar
  66. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in Human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672PubMedCrossRefGoogle Scholar
  67. Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Arch Psychol 23:1–73Google Scholar
  68. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148PubMedPubMedCentralCrossRefGoogle Scholar
  69. Praamstra P (2006) Prior information of stimulus location: effects on ERP measures of visual selection and response selection. Brain Res 1072(1):153–160PubMedCrossRefGoogle Scholar
  70. Praamstra P, Oostenveld R (2003) Attention and movement-related motor cortex activation: a high density EEG study of spatial stimulus–response compatibility. Brain Res Cogn Brain Res 16(3):309–322PubMedCrossRefGoogle Scholar
  71. Ramchurn A, de Fockert JW, Mason L, Darling S, Bunce D (2014) Intraindividual reaction time variability affects P300 amplitude rather than latency. Front Hum Neurosci 8:557. doi: 10.3389/fnhum.2014.00557 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Roth WT, Ford JM, Kopell BS (1978) Long-latency evoked potentials and reaction time. Psychophysiology 15(1):17–23PubMedCrossRefGoogle Scholar
  73. Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308(5722):702–704PubMedCrossRefGoogle Scholar
  74. Saron CD, Davidson RJ (1989) Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci 103(5):1115–1138PubMedCrossRefGoogle Scholar
  75. Saville CWN, Dean RO, Daley D, Intriligator J, Boehm S, Feige B, Klein C (2011) Electrocortical correlates of intra-subject variability in reaction time: average and single-trial analyses. Biol Psychol 87(1):74–83PubMedCrossRefGoogle Scholar
  76. Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain 121(Pt 5):785–799PubMedCrossRefGoogle Scholar
  77. Sharma T, Lancaster E, Sigmundsson T, Lewis S, Takei N, Gurling H, Barta P, Pearlson G, Murray R (1999) Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives: the Maudsley Family Study. Schizophr Res 40(2):111–120PubMedCrossRefGoogle Scholar
  78. Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588PubMedPubMedCentralCrossRefGoogle Scholar
  79. Spironelli C, Penolazzi B, Angrilli A (2008) Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biol Psychol 77(2):123–131PubMedCrossRefGoogle Scholar
  80. Steel C, Hemsley DR, Pickering AD (2002) Distractor cueing effects on choice reaction time and their relationship with schizotypal personality. Br J Clin Psychol 41(Pt 2):143–156PubMedCrossRefGoogle Scholar
  81. Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301(5631):384–386PubMedCrossRefGoogle Scholar
  82. Sternberg S (1969) The discovery of processing stages: extension of Donders’ method. Acta Psychol 30:276–315CrossRefGoogle Scholar
  83. Störmer V, McDonald JJ, Hillyard SA (2009) Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proc Natl Acad Sci USA 106(52):22456–22461PubMedPubMedCentralCrossRefGoogle Scholar
  84. Suchan B, Zoppelt D, Daum I (2003) Frontocentral negativity in electroencephalogram reflects motor response evaluation in humans on correct trials. Neurosci Lett 350(2):101–104PubMedCrossRefGoogle Scholar
  85. Suchan B, Jokisch D, Skotara N, Daum I (2007) Evaluation-related frontocentral negativity evoked by correct responses and errors. Behav Brain Res 183(2):206–212PubMedCrossRefGoogle Scholar
  86. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246PubMedCrossRefGoogle Scholar
  87. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48PubMedCrossRefGoogle Scholar
  88. Tommasi L (2009) Mechanisms and functions of brain and behavioral asymmetries. Philos Trans R Soc Lond B Biol Sci 364(1519):855–859PubMedCrossRefGoogle Scholar
  89. Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Havelone ND, Rosas HD (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci USA 102(34):12212–12217PubMedPubMedCentralCrossRefGoogle Scholar
  90. Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34(2):131–156PubMedCrossRefGoogle Scholar
  91. Verleger R (2008) P3b: towards some decision about memory. Clin Neurophysiol 119(4):968–970PubMedCrossRefGoogle Scholar
  92. Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181CrossRefGoogle Scholar
  93. Verleger R, Baur N, Metzner MF, Śmigasiewicz K (2014a) The hard oddball: effects of difficult response selection on stimulus-related P3 and on response-related negative potentials. Psychophysiology 51(11):1089–1100PubMedCrossRefGoogle Scholar
  94. Verleger R, Metzner MF, Ouyang G, Śmigasiewicz K, Zhou C (2014b) Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage 100:271–280PubMedCrossRefGoogle Scholar
  95. Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37(2):190–203PubMedCrossRefGoogle Scholar
  96. Walhovd KB, Fjell AM (2007) White matter volume predicts reaction time instability. Neuropsychologia 45(10):2277–2284PubMedCrossRefGoogle Scholar
  97. Wascher E, Hoffmann S, Sänger J, Grosjean M (2009) Visuo-spatial processing and the N1 components of the ERP. Psychophysiology 46(6):1270–1277PubMedCrossRefGoogle Scholar
  98. Weintraub S, Mesulam MM (1987) Right cerebral dominance in spatial attention: further evidence based on ipsilateral neglect. Arch Neurol 44(6):621–625PubMedCrossRefGoogle Scholar
  99. Westerhausen R, Kreuder F, Woerner W, Huster RJ, Smit CM, Schweiger E, Wittling W (2006) Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett 409(2):140–145PubMedCrossRefGoogle Scholar
  100. Whitford TJ, Kubicki M, Ghorashi S, Schneiderman JS, Hawley KJ, McCarley RW, Shenton ME, Spencer KM (2011) Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. NeuroImage 54(3):2318–2329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ingrida Antonova
    • 1
    • 2
  • Claudia van Swam
    • 2
  • Daniela Hubl
    • 2
  • Thomas Dierks
    • 2
  • Inga Griskova-Bulanova
    • 1
  • Thomas Koenig
    • 2
  1. 1.Department of Neurobiology and BiophysicsVilnius UniversityVilniusLithuania
  2. 2.Department of Psychiatric NeurophysiologyUniversity Hospital of PsychiatryBernSwitzerland

Personalised recommendations