Advertisement

Brain Topography

, Volume 29, Issue 3, pp 405–411 | Cite as

Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder

  • Youxue Zhang
  • Bing Xie
  • Heng Chen
  • Meiling Li
  • Feng Liu
  • Huafu ChenEmail author
Original Paper

Abstract

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

Keywords

Post-traumatic stress disorder Functional connectivity density Dorsolateral prefrontal cortex 

Notes

Acknowledgments

The authors thank all individuals who served as the research participants. The work is supported by the 973 project (2012CB517901), 863 project (2015AA020505), the Natural Science Foundation of China (61533006, 61125304 and 81501451), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185110028) and the Fundamental Research Funds for the Central Universities (ZYGX2013Z004).

Author Contributors

Huafu Chen designed the study and Bing Xie collected the original imaging data. Youxue Zhang, Feng Liu, Heng Chen, Meiling Li managed and analyzed the imaging data. Youxue Zhang wrote the first draft of the manuscript. All authors have read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

No conflict of interest declared.

Supplementary material

10548_2016_472_MOESM1_ESM.docx (341 kb)
Supplementary material 1 (DOCX 341 kb)

References

  1. Barcelo F, Suwazono S, Knight RT (2000) Prefrontal modulation of visual processing in humans. Nat Neurosci 3:399–403CrossRefPubMedGoogle Scholar
  2. Barkhof F, Haller S, Rombouts SA (2014) Resting-state functional MR imaging: a new window to the brain. Radiology 272:29–49CrossRefPubMedGoogle Scholar
  3. Blake DD, Weathers FW, Nagy LM, Kaloupek DG, Gusman FD, Charney DS, Keane TM (1995) The development of a clinician-administered PTSD scale. J Trauma Stress 8:75–90CrossRefPubMedGoogle Scholar
  4. Blatt GJ, Pandya DN, Rosene DL (2003) Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J Comp Neurol 466:161–179CrossRefPubMedGoogle Scholar
  5. Bradley R, Greene J, Russ E, Dutra L, Westen D (2005) A multidimensional meta-analysis of psychotherapy for PTSD. Am J Psychiatry 162:214–227CrossRefPubMedGoogle Scholar
  6. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMedGoogle Scholar
  7. Egner T, Hirsch J (2005) The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 24:539–547CrossRefPubMedGoogle Scholar
  8. Fani N, Jovanovic T, Ely TD, Bradley B, Gutman D, Tone EB, Ressler KJ (2012) Neural correlates of attention bias to threat in post-traumatic stress disorder. Biol Psychol 90:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  9. Francati V, Vermetten E, Bremner J (2007) Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depress Anxiety 24:202–218CrossRefPubMedPubMedCentralGoogle Scholar
  10. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355CrossRefPubMedGoogle Scholar
  11. Gazzaley A, D’Esposito M (2007) Unifying prefrontal cortex function: executive control, neural networks, and top-down modulation. The human frontal lobes: Functions and disorders. Guilford Press, New York, NY, pp 187–206Google Scholar
  12. Guo W-B, Liu F, Xue Z-M, Yu Y, Ma C-Q, Tan C-L, Sun X-L, Chen J-D, Liu Z-N, Xiao C-Q (2011) Abnormal neural activities in first-episode, treatment-naive, short-illness-duration, and treatment-response patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 135:326–331CrossRefPubMedGoogle Scholar
  13. Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, Chen H, Zhao J (2013) Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry 44:51–57CrossRefPubMedGoogle Scholar
  14. Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291CrossRefPubMedGoogle Scholar
  15. Hughes KC, Shin LM (2011) Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev Neurother 11:275–285CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jiang L, Zuo X-N (2015) Regional homogeneity a multimodal, multiscale neuroimaging marker of the human connectome. The Neuroscientist. doi: 10.1177/1073858415595004 PubMedGoogle Scholar
  17. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341CrossRefPubMedGoogle Scholar
  18. Knight RT (2007) Neuroscience. Neural networks debunk phrenology. Science 316:1578–1579CrossRefPubMedGoogle Scholar
  19. Lanius R, Bluhm R, Coupland N, Hegadoren K, Rowe B, Theberge J, Neufeld R, Williamson P, Brimson M (2010) Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand 121:33–40CrossRefPubMedGoogle Scholar
  20. Liu F, Hu M, Wang S, Guo W, Zhao J, Li J, Xun G, Long Z, Zhang J, Wang Y, Zeng L, Gao Q, Wooderson SC, Chen J, Chen H (2012) Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 39:326–331CrossRefPubMedGoogle Scholar
  21. Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z, Wang Y, Li J, Hu M, Zhang J, Du H, Zeng L, Liu Z, Wooderson SC, Tan C, Zhao J, Chen H (2013) Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 146:401–406CrossRefPubMedGoogle Scholar
  22. Liu F, Guo W, Fouche J-P, Wang Y, Wang W, Ding J, Zeng L, Qiu C, Gong Q, Zhang W (2015a) Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct 220:101–115CrossRefGoogle Scholar
  23. Liu F, Xie B, Wang Y, Guo W, Fouche J-P, Long Z, Wang W, Chen H, Li M, Duan X (2015b) Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topogr 28:221–237CrossRefPubMedGoogle Scholar
  24. Liu F, Zhu C, Wang Y, Guo W, Li M, Wang W, Long Z, Meng Y, Cui Q, Zeng L, Gong Q, Zhang W, Chen H (2015c) Disrupted cortical hubs in functional brain networks in social anxiety disorder. Clin Neurophysiol 126:1711–1716CrossRefPubMedGoogle Scholar
  25. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869CrossRefPubMedGoogle Scholar
  26. Malt U (1988) The long-term psychiatric consequences of accidental injury. A longitudinal study of 107 adults. Br J Psychiatry 153:810–818CrossRefPubMedGoogle Scholar
  27. Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65CrossRefPubMedGoogle Scholar
  28. Moores KA, Clark CR, McFarlane AC, Brown GC, Puce A, Taylor DJ (2008a) Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral information in post-traumatic stress disorder. Psychiatry Res 163:156–170CrossRefPubMedGoogle Scholar
  29. Moores KA, Clark CR, McFarlane AC, Brown GC, Puce A, Taylor DJ (2008b) Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral information in post-traumatic stress disorder. Psychiatry Res 163:156–170CrossRefPubMedGoogle Scholar
  30. Olff M, Polak AR, Witteveen AB, Denys D (2014) Executive function in posttraumatic stress disorder (PTSD) and the influence of comorbid depression. Neurobiol Learn Mem 112:114–121CrossRefPubMedGoogle Scholar
  31. Pantazatos SP, Yanagihara TK, Zhang X, Meitzler T, Hirsch J (2012) Frontal-occipital connectivity during visual search. Brain Connect 2:164–175CrossRefPubMedPubMedCentralGoogle Scholar
  32. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rauch SL, van der Kolk BA, Fisler RE, Alpert NM, Orr SP, Savage CR, Fischman AJ, Jenike MA, Pitman RK (1996) A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry 53:380–387CrossRefPubMedGoogle Scholar
  34. Scolari M, Seidl-Rathkopf KN, Kastner S (2015) Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr Opin Behav Sci 1:32–39CrossRefGoogle Scholar
  35. Sripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, Liberzon I (2012) Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci 37:241CrossRefPubMedPubMedCentralGoogle Scholar
  36. Suo X, Lei D, Li K, Chen F, Li F, Li L, Huang X, Lui S, Li L, Kemp GJ (2015) Disrupted brain network topology in pediatric posttraumatic stress disorder: a resting-state fMRI study. Hum Brain Mapp 36:3677–3686CrossRefPubMedGoogle Scholar
  37. Sylvester C, Corbetta M, Raichle M, Rodebaugh T, Schlaggar B, Sheline Y, Zorumski C, Lenze E (2012) Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci 35:527–535CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tomasi D, Volkow ND (2010) Functional connectivity density mapping. Proc Natl Acad Sci 107:9885–9890CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ungerleider L, Gaffan D, Pelak V (1989) Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76:473–484CrossRefPubMedGoogle Scholar
  40. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vanni S, Tanskanen T, Seppä M, Uutela K, Hari R (2001) Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci 98:2776–2780CrossRefPubMedPubMedCentralGoogle Scholar
  42. Vasterling JJ, Brailey K, Constans JI, Sutker PB (1998) Attention and memory dysfunction in posttraumatic stress disorder. Neuropsychology 12:125CrossRefPubMedGoogle Scholar
  43. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511–1523CrossRefPubMedGoogle Scholar
  44. Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y (2013) Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol Psychiatry 73:472–481CrossRefPubMedGoogle Scholar
  45. White SF, Costanzo ME, Blair JR, Roy MJ (2015) PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample. NeuroImage 7:19–27CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yago E, Duarte A, Wong T, Barceló F, Knight RT (2004) Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention. Cogn Affect Behav Neurosci 4:609–617CrossRefPubMedGoogle Scholar
  47. Yan C, Zang Y (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13Google Scholar
  48. Yin Y, Jin C, Hu X, Duan L, Li Z, Song M, Chen H, Feng B, Jiang T, Jin H (2011) Altered resting-state functional connectivity of thalamus in earthquake-induced posttraumatic stress disorder: a functional magnetic resonance imaging study. Brain Res 1411:98–107PubMedGoogle Scholar
  49. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394–400CrossRefPubMedGoogle Scholar
  50. Zatzick DF, Marmar CR, Weiss DS, Browner WS, Metzler TJ, Golding JM, Stewart A, Schlenger WE, Wells KB (1997) Posttraumatic stress disorder and functioning and quality of life outcomes in a nationally representative sample of male Vietnam veterans. Am J Psychiatry 154:1690–1695CrossRefPubMedGoogle Scholar
  51. Zhang Z, Liu Y, Jiang T, Zhou B, An N, Dai H, Wang P, Niu Y, Wang L, Zhang X (2012) Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by Regional Homogeneity. Neuroimage 59:1429–1440CrossRefPubMedGoogle Scholar
  52. Zuo X-N, Xing X-X (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav R 45:100–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Youxue Zhang
    • 1
  • Bing Xie
    • 2
  • Heng Chen
    • 1
  • Meiling Li
    • 1
  • Feng Liu
    • 1
    • 3
  • Huafu Chen
    • 1
    Email author
  1. 1.Center for Information in BioMedicine, Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Department of AnatomyThird Military Medical UniversityChongqingPeople’s Republic of China
  3. 3.Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinPeople’s Republic of China

Personalised recommendations