Advertisement

Brain Topography

, Volume 29, Issue 1, pp 1–12 | Cite as

Asymmetric Weighting to Optimize Regional Sensitivity in Combined fMRI-MEG Maps

  • Sean R. McWhinney
  • Timothy Bardouille
  • Ryan C. N. D’Arcy
  • Aaron J. Newman
Original Paper

Abstract

Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) are neuroimaging techniques that measure inherently different physiological processes, resulting in complementary estimates of brain activity in different regions. Combining the maps generated by each technique could thus provide a richer understanding of brain activation. However, present approaches to integration rely on a priori assumptions, such as expected patterns of brain activation in a task, or use fMRI to bias localization of MEG sources, diminishing fMRI-invisible sources. We aimed to optimize sensitivity to neural activity by developing a novel method of integrating data from the two imaging techniques. We present a data-driven method of integration that weights fMRI and MEG imaging data by estimates of data quality for each technique and region. This method was applied to a verbal object recognition task. As predicted, the two imaging techniques demonstrated sensitivity to activation in different regions. Activity was seen using fMRI, but not MEG, throughout the medial temporal lobes. Conversely, activation was seen using MEG, but not fMRI, in more lateral and anterior temporal lobe regions. Both imaging techniques were sensitive to activation in the inferior frontal gyrus. Importantly, integration maps retained activation from individual activation maps, and showed an increase in the extent of activation, owing to greater sensitivity of the integration map than either fMRI or MEG alone.

Keywords

Functional MRI Magnetoencephalography Multimodal Neuroimaging Language 

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC-19:716–723. doi: 10.1109/TAC.1974.1100705
  2. Bar M, Tootell R, Schacter D, Greve D (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29:529–535PubMedCrossRefGoogle Scholar
  3. Bardouille T, Krishnamurthy SV, Hajra SG, D’Arcy RCN (2012) Improved localization accuracy in magnetic source imaging using a 3-D laser scanner. IEEE Trans Biomed Eng 59:3491–3497. doi: 10.1109/TBME.2012.2220356 PubMedCrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classesGoogle Scholar
  5. Bellgowan PSF, Buffalo EA, Bodurka J, Martin A (2009) Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learn Mem 16:433–438. doi: 10.1101/lm.1357309.Freely PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bojak I, Oostendorp T (2011) Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos Trans R Soc 369:3785–3801. doi: 10.1098/rsta.2011.0080 CrossRefGoogle Scholar
  7. Bonelli SB, Powell R, Thompson PJ et al (2011) Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Res 95:246–254. doi: 10.1016/j.eplepsyres.2011.04.007 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brewer KD, Rioux JA, D’Arcy RCN et al (2009) Asymmetric spin-echo (ASE) spiral improves BOLD fMRI in inhomogeneous regions. NMR Biomed 22:654–662. doi: 10.1002/nbm.1380 PubMedCrossRefGoogle Scholar
  9. Brewer KD, Rioux JA, Klassen M et al (2012) Signal displacement in spiral-in acquisitions: simulations and implications for imaging in SFG regions. Magn Reson Imaging 30:753–763. doi: 10.1016/j.mri.2012.02.014 PubMedCrossRefGoogle Scholar
  10. Cheyne D, Bostan AC, Gaetz W, Pang EW (2007) Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol 118:1691–1704PubMedCrossRefGoogle Scholar
  11. Chouinard PA, Whitwell RL, Goodale MA (2009) The lateral-occipital and the inferior-frontal cortex play different roles during the naming of visually presented objects. Hum Brain Mapp 30:3851–3864. doi: 10.1002/hbm.20812 PubMedCrossRefGoogle Scholar
  12. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173. doi: 10.1006/cbmr.1996.0014 PubMedCrossRefGoogle Scholar
  13. D’Arcy RCN, Bardouille T, Newman AJ et al (2012) Spatial MEG laterality maps for language: clinical applications in epilepsy. Hum Brain Mapp 34:1749–1760. doi: 10.1002/hbm.22024 PubMedCrossRefGoogle Scholar
  14. Dale AM, Liu AK, Fischl BR et al (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67PubMedCrossRefGoogle Scholar
  15. Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  16. Devlin JT, Russell RP, Davis MH et al (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11:589–600. doi: 10.1006/nimg.2000.0595 PubMedCrossRefGoogle Scholar
  17. Dixon P (2008) Models of accuracy in repeated-measures designs. J Mem Lang 59:447–456. doi: 10.1016/j.jml.2007.11.004 CrossRefGoogle Scholar
  18. Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. Int J Psychophysiol 73:43–52PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fujimaki N, Hayakawa T, Nielsen M et al (2002) An fMRI-constrained MEG source analysis with procedures for dividing and grouping activation. Neuroimage 17:324–343PubMedCrossRefGoogle Scholar
  20. Geissler A, Gartus A, Foki T et al (2007) Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25:1263–1270. doi: 10.1002/jmri.20935 PubMedCrossRefGoogle Scholar
  21. Greene AJ, Gross WL, Elsinger CL, Rao SM (2006) An FMRI analysis of the human hippocampus: inference, context, and task awareness. J Cogn Neurosci 18:1156–1173. doi: 10.1162/jocn.2006.18.7.1156 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422PubMedCrossRefGoogle Scholar
  23. Grummich P, Nimsky C, Pauli E et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32:1793–1803. doi: 10.1016/j.neuroimage.2006.05.034 PubMedCrossRefGoogle Scholar
  24. Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36:165–171. doi: 10.1109/10.16463 PubMedCrossRefGoogle Scholar
  25. Hamalainen M, Hari R, Ilmoniemi RJ et al (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497. doi:10.1103/RevModPhys.65.413Google Scholar
  26. Henson RN (2007) Efficient experimental design for fMRI. In: Penny WD, Friston KJ, Ashburner JT, et al (eds) Stat. Parametr. Mapp. Anal. Funct. brain images, 1st edn. Academic Press, Waltham, USA, pp 193–210Google Scholar
  27. Henson RN, Flandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841. doi: 10.1006/nimg.2002.1132 PubMedCrossRefGoogle Scholar
  29. Kim JS, Chung CK (2008) Language lateralization using MEG beta frequency desynchronization during auditory oddball stimulation with one-syllable words. Neuroimage 42:1499–1507. doi: 10.1016/j.neuroimage.2008.06.001 PubMedCrossRefGoogle Scholar
  30. Kobayashi T, Kuriki S (1999) Principal component elimination method for the improvement of in evoked neuromagnetic field measurements. IEEE Trans Biomed Eng 46:951–958PubMedCrossRefGoogle Scholar
  31. Lagerlund TD, Shardbrough FW, Busacker NE (1997) Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J Clin Neurophysiol 14:73–82PubMedCrossRefGoogle Scholar
  32. Liu Z, Kecman F, He B (2006) Effects of fMRI-EEG mismatches in cortical current density estimation integrating fMRI and EEG: a simulation study. Clin Neurophysiol 117:1610–1622PubMedPubMedCentralCrossRefGoogle Scholar
  33. Logothetis NK, Pauls J, Augath M et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157. doi: 10.1038/35084005 PubMedCrossRefGoogle Scholar
  34. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  35. Ou W, Nummenmaa A, Ahveninen J et al (2010) Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. Neuroimage 52:97–108. doi: 10.1016/j.neuroimage.2010.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Pang EW, Wang F, Malone M et al (2011) Localization of Broca’s area using verb generation tasks in the MEG: validation against fMRI. Neurosci Lett 490:215–219. doi: 10.1016/j.neulet.2010.12.055 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Quraan MA, Moses SN, Hung Y et al (2011) Detection and localization of hippocampal activity using beamformers with MEG: a detailed investigation using simulations and empirical data. Hum Brain Mapp 32:812–827PubMedCrossRefGoogle Scholar
  38. Riggs L, Moses SN, Bardouille T et al (2009) A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography. Neuroimage 45:627–642. doi: 10.1016/j.neuroimage.2008.11.018 PubMedCrossRefGoogle Scholar
  39. Rossion B, Pourtois G (2004) Revisiting Snodgrass and Vanderwart’s object pictorial set: the role of surface detail in basic-level object recognition. Perception 33:217–236PubMedCrossRefGoogle Scholar
  40. Sekihara K, Nagarajan SS, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51:1726–1734PubMedPubMedCentralCrossRefGoogle Scholar
  41. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi: 10.1002/hbm.10062 PubMedCrossRefGoogle Scholar
  42. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051 PubMedCrossRefGoogle Scholar
  43. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231PubMedCrossRefGoogle Scholar
  44. Stark CE, Squire LR (2000) Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J Neurosci 20:7776–7781PubMedGoogle Scholar
  45. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging. Thieme Medical Publishers, New YorkGoogle Scholar
  46. Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the signal space separation method. Brain Topogr 16:275Google Scholar
  47. Tremblay A, Ransijn J (2013) LMER convenience functions: a suite of functions to back-fit fixed effects and forward-fit random effects, as well as other miscellaneous functionsGoogle Scholar
  48. Vrba J, Taulu S, Nenonen J (2010) Signal space separation beamformer. Brain Topogr 23:128–133. doi: 10.1007/s10548-009-0120-7 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Whittaker E (1951) A history of the theories of Aether and electricity 34Google Scholar
  50. Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. Neuroimage 14:1370–1386. doi: 10.1006/nimg.2001.0931 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sean R. McWhinney
    • 1
  • Timothy Bardouille
    • 2
  • Ryan C. N. D’Arcy
    • 3
  • Aaron J. Newman
    • 1
  1. 1.Department of Psychology and NeuroscienceDalhousie UniversityHalifaxCanada
  2. 2.IWK Health Centre, Biomedical Translational Imaging CentreHalifaxCanada
  3. 3.Simon Fraser University and Surrey Memorial HospitalSchool of Engineering ScienceSurreyCanada

Personalised recommendations