Brain Topography

, Volume 29, Issue 1, pp 67–81 | Cite as

The Influence of Pre-stimulus EEG Activity on Reaction Time During a Verbal Sternberg Task is Related to Musical Expertise

  • Carina Klein
  • Laura Diaz Hernandez
  • Thomas Koenig
  • Mara Kottlow
  • Stefan Elmer
  • Lutz Jäncke
Original Paper


Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.


Behavior Correlation Covariance mapping Musicianship Prestimulus 



This project was funded by the SNSF (Swiss National Science Foundation) Sinergia-Grant #136249 to LJ.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Achim A, Bouchard J, Braun CM (2013) EEG amplitude spectra before near threshold visual presentations differentially predict detection/omission and short-long reaction time outcomes. Int J Psychophysiol 89(1):88–98. doi: 10.1016/j.ijpsycho.2013.05.016 PubMedCrossRefGoogle Scholar
  2. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JD (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50(3):507–517. doi: 10.1016/j.neuron.2006.03.036 PubMedCrossRefGoogle Scholar
  3. Amer T, Kalender B, Hasher L, Trehub SE, Wong Y (2013) Do older professional musicians have cognitive advantages? PLoS ONE 8(8):e71630. doi: 10.1371/journal.pone.0071630 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321PubMedCrossRefGoogle Scholar
  5. Babiloni C, Vecchio F, Bultrini A, Luca Romani G, Rossini PM (2006) Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study. Cereb Cortex 16(12):1690–1700. doi: 10.1093/cercor/bhj104 PubMedCrossRefGoogle Scholar
  6. Basile LF, Anghinah R, Ribeiro P, Ramos RT, Piedade R, Ballester G, Brunetti EP (2007) Interindividual variability in EEG correlates of attention and limits of functional mapping. Int J Psychophysiol 65(3):238–251. doi: 10.1016/j.ijpsycho.2007.05.001 PubMedCrossRefGoogle Scholar
  7. Baumann S, Meyer M, Jäncke L (2008) Enhancement of auditory-evoked potentials in musicians reflects an influence of expertise but not selective attention. J Cogn Neurosci 20(12):2238–2249PubMedCrossRefGoogle Scholar
  8. Besson M, Chobert J, Marie C (2011) Transfer of training between music and speech: common processing, attention, and memory. Front Psychol 2:94. doi: 10.3389/fpsyg.2011.00094 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Britz J, Michel CM (2010) Errors can be related to pre-stimulus differences in ERP topography and their concomitant sources. Neuroimage 49(3):2774–2782PubMedCrossRefGoogle Scholar
  10. Britz J, Diaz Hernandez L, Ro T, Michel CM (2014) EEG-microstate dependent emergence of perceptual awareness. Front Behav Neurosci 8:163. doi: 10.3389/fnbeh.2014.00163 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brochard R, Dufour A, Després O (2004) Effect of musical expertise on visuospatial abilities: evidence from reaction times and mental imagery. Brain Cogn 54(2):103–109. doi: 10.1016/s0278-2626(03)00264-1 PubMedCrossRefGoogle Scholar
  12. Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29(24):7869–7876. doi: 10.1523/JNEUROSCI.0113-09.2009 PubMedCrossRefGoogle Scholar
  13. Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315(5820):1860–1862. doi: 10.1126/science.1138071 PubMedCrossRefGoogle Scholar
  14. Buschman TJ, Miller EK (2009) Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron 63(3):386–396. doi: 10.1016/j.neuron.2009.06.020 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cabeza R, Nyberg L (2000) Imaging Cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–47PubMedCrossRefGoogle Scholar
  16. Chen SS, Tu PC, Su TP, Hsieh JC, Lin YC, Chen LF (2008) Impaired frontal synchronization of spontaneous magnetoencephalographic activity in patients with bipolar disorder. Neurosci Lett 445(2):174–178. doi: 10.1016/j.neulet.2008.08.080 PubMedCrossRefGoogle Scholar
  17. Chen J, Dastjerdi M, Foster BL, LaRocque KF, Rauschecker AM, Parvizi J, Wagner AD (2013) Human hippocampal increases in low-frequency power during associative prediction violations. Neuropsychologia 51(12):2344–2351. doi: 10.1016/j.neuropsychologia.2013.03.019 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Crespo-Garcia M, Cantero JL, Atienza M (2012) Effects of semantic relatedness on age-related associative memory deficits: the role of theta oscillations. NeuroImage 61(4):1235–1248. doi: 10.1016/j.neuroimage.2012.03.034 PubMedCrossRefGoogle Scholar
  19. Douglas KM, Bilkey DK (2007) Amusia is associated with deficits in spatial processing. Nat Neurosci 10(7):915–921. doi: 10.1038/nn1925 PubMedCrossRefGoogle Scholar
  20. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in grey matter induced by training. Nature 427(6972):311–312PubMedCrossRefGoogle Scholar
  21. Elmer S, Meyer M, Jancke L (2012) Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb Cortex 22(3):650–658. doi: 10.1093/cercor/bhr142 PubMedCrossRefGoogle Scholar
  22. Elmer S, Klein C, Kühnis J, Liem F, Meyer M, Jäncke L (2014) Music and language expertise influence the categorization of speech and musical sounds: behavioral and electrophysiological measurements. J Cogn Neurosci. doi: 10.1162/jocn_a_00632 Google Scholar
  23. Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20(2):156–165. doi: 10.1016/j.conb.2010.02.015 PubMedCrossRefGoogle Scholar
  24. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704–716PubMedCrossRefGoogle Scholar
  25. Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20(3):376–383. doi: 10.1016/j.cogbrainres.2004.03.009 PubMedCrossRefGoogle Scholar
  26. Foxe JJ, Snyder AC (2011) The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol 2:154. doi: 10.3389/fpsyg.2011.00154 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Foxe JJ, Simpson GV, Ahlfors SP (1998) Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport 9(17):3929–3933PubMedCrossRefGoogle Scholar
  28. Freunberger R, Holler Y, Griesmayr B, Gruber W, Sauseng P, Klimesch W (2008) Functional similarities between the P1 component and alpha oscillations. Eur J Neurosci 27(9):2330–2340. doi: 10.1111/j.1460-9568.2008.06190.x PubMedCrossRefGoogle Scholar
  29. Freunberger R, Fellinger R, Sauseng P, Gruber W, Klimesch W (2009) Dissociation between phase-locked and nonphase-locked alpha oscillations in a working memory task. Hum Brain Mapp 30(10):3417–3425. doi: 10.1002/hbm.20766 PubMedCrossRefGoogle Scholar
  30. Freunberger R, Werkle-Bergner M, Griesmayr B, Lindenberger U, Klimesch W (2011) Brain oscillatory correlates of working memory constraints. Brain Res 1375:93–102. doi: 10.1016/j.brainres.2010.12.048 PubMedCrossRefGoogle Scholar
  31. Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224. doi: 10.1146/annurev.neuro.051508.135603 PubMedCrossRefGoogle Scholar
  32. Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23(27):9240–9245PubMedGoogle Scholar
  33. Geller AS, Burke JF, Sperling MR, Sharan AD, Litt B, Baltuch GH, Lucas TH 2nd, Kahana MJ (2014) Eye closure causes widespread low-frequency power increase and focal gamma attenuation in the human electrocorticogram. Clin Neurophysiol. doi: 10.1016/j.clinph.2014.01.021 PubMedPubMedCentralGoogle Scholar
  34. George EM, Coch D (2011) Music training and working memory: an ERP study. Neuropsychologia 49(5):1083–1094. doi: 10.1016/j.neuropsychologia.2011.02.001 PubMedCrossRefGoogle Scholar
  35. Gladwin TE, Lindsen JP, de Jong R (2006) Pre-stimulus EEG effects related to response speed, task switching and upcoming response hand. Biol Psychol 72(1):15–34. doi: 10.1016/j.biopsycho.2005.05.005 PubMedCrossRefGoogle Scholar
  36. Gonzalez Andino SL, Michel CM, Thut G, Landis T, Grave de Peralta R (2005) Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain. Hum Brain Mapp 24(1):50–58. doi: 10.1002/hbm.20056 PubMedCrossRefGoogle Scholar
  37. Gordon EE (1989) Manual for the advanced measures of music education. G.I.A. Publications, Inc., ChicagoGoogle Scholar
  38. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101(35):13050–13055. doi: 10.1073/pnas.0404944101 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Groussard M, La Joie R, Rauchs G, Landeau B, Chételat G, Fausto V, Desgranges B, Eustache F, Platel H (2010) When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus. PLoS ONE 5(10):e13225. doi: 10.1371/journal.pone.0013225.t001 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gruber MJ, Otten LJ (2010) Voluntary control over prestimulus activity related to encoding. J Neurosci 30(29):9793–9800. doi: 10.1523/JNEUROSCI.0915-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Haegens S, Handel BF, Jensen O (2011) Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci 31(14):5197–5204. doi: 10.1523/JNEUROSCI.5199-10.2011 PubMedCrossRefGoogle Scholar
  42. Hamm JP, Dyckman KA, Ethridge LE, McDowell JE, Clementz BA (2010) Preparatory activations across a distributed cortical network determine production of express saccades in humans. J Neurosci 30(21):7350–7357. doi: 10.1523/JNEUROSCI.0785-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T (2005) Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neurosci Lett 375(1):64–68. doi: 10.1016/j.neulet.2004.10.092 PubMedCrossRefGoogle Scholar
  44. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml KH (2007) Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage 37(4):1465–1473. doi: 10.1016/j.neuroimage.2007.07.011 PubMedCrossRefGoogle Scholar
  45. Herholz SC, Zatorre RJ (2012) Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76(3):486–502. doi: 10.1016/j.neuron.2012.10.011 PubMedCrossRefGoogle Scholar
  46. Ho YC, Cheung MC, Chan AS (2003) Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology 17(3):439–450PubMedCrossRefGoogle Scholar
  47. Huang Z, Zhang JX, Yang Z, Dong G, Wu J, Chan AS, Weng X (2010) Verbal memory retrieval engages visual cortex in musicians. Neuroscience 168(1):179–189. doi: 10.1016/j.neuroscience.2010.03.027 PubMedCrossRefGoogle Scholar
  48. Jäncke L (2009a) Music drives brain plasticity. F1000 Biol Rep. doi: 10.3410/B1-78 PubMedPubMedCentralGoogle Scholar
  49. Jäncke L (2009b) The plastic human brain. Restor Neurol Neurosci 27(5):521–538. doi: 10.3233/RNN-2009-0519 PubMedGoogle Scholar
  50. Jäncke L (2012) The dynamic audio-motor system in pianists. Ann N Y Acad Sci 1252:246–252. doi: 10.1111/j.1749-6632.2011.06416.x PubMedCrossRefGoogle Scholar
  51. Jäncke L (2013) Music making and the aging brain. Zeitschrift für Neuropsychologie 24(2):113–121CrossRefGoogle Scholar
  52. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186. doi: 10.3389/fnhum.2010.00186 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 3(12):2187–2199. doi: 10.1371/journal.pbio.0030402.g001 CrossRefGoogle Scholar
  54. Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, Sejnowski T (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178PubMedCrossRefGoogle Scholar
  55. Kaminski J, Brzezicka A, Gola M, Wrobel A (2012) Beta band oscillations engagement in human alertness process. Int J Psychophysiol 85(1):125–128. doi: 10.1016/j.ijpsycho.2011.11.006 PubMedCrossRefGoogle Scholar
  56. Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behavior and cognition. Nat Rev Neurosci 12(4):231–242PubMedCrossRefGoogle Scholar
  57. Katsuki F, Constantinidis C (2012) Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 6:17. doi: 10.3389/fnint.2012.00017 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kelly AM, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15(8):1089–1102. doi: 10.1093/cercor/bhi005 PubMedCrossRefGoogle Scholar
  59. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195PubMedCrossRefGoogle Scholar
  60. Koelsch S, Schulze K, Sammler D, Fritz T, Muller K, Gruber O (2009) Functional architecture of verbal and tonal working memory: an FMRI study. Hum Brain Mapp 30(3):859–873. doi: 10.1002/hbm.20550 PubMedCrossRefGoogle Scholar
  61. Koenig T, Melie-Garcia L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23(3):233–242. doi: 10.1007/s10548-010-0142-1 PubMedCrossRefGoogle Scholar
  62. Koenig T, Melie-Garcia L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 119(6):1262–1270. doi: 10.1016/j.clinph.2007.12.023 PubMedCrossRefGoogle Scholar
  63. Koenig T, Kottlow M, Stein M, Melie-Garcia L (2011) Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci 2011:938925. doi: 10.1155/2011/938925 PubMedPubMedCentralGoogle Scholar
  64. Kühnis J, Elmer S, Meyer M, Jäncke L (2013) Musicianship boosts perceptual learning of pseudoword-chimeras: an electrophysiological approach. Brain Topogr 26(1):110–125. doi: 10.1007/s10548-012-0237-y PubMedCrossRefGoogle Scholar
  65. Kühnis J, Elmer S, Jäncke L (2014) Auditory evoked responses in musicians during passive vowel listening are modulated by functional connectivity between bilateral auditory-related brain regions. J Cogn Neurosci. doi: 10.1162/jocn_a_00674 Google Scholar
  66. Lara AH, Wallis JD (2014) Executive control processes underlying multi-item working memory. Nat Neurosci 17(6):876–883. doi: 10.1038/nn.3702 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403. doi: 10.1073/pnas.070039597 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci 29(9):2725–2732. doi: 10.1523/JNEUROSCI.3963-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mazaheri A, DiQuattro NE, Bengston J, Geng JJ (2011) Pre-stimulus activity predicts the winner of top-down vs. bottom up attentional selection. PLoS ONE 6(2):e16243. doi: 10.1371/journal.pone.0016243 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Meeter M, Murre JM, Talamini LM (2004) Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus 14(6):722–741. doi: 10.1002/hipo.10214 PubMedCrossRefGoogle Scholar
  71. Meltzer JA, Negishi M, Mayes LC, Constable RT (2007) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118(11):2419–2436. doi: 10.1016/j.clinph.2007.07.023 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS ONE 5(4):e10298. doi: 10.1371/journal.pone.0010298 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Minkwitz J, Trenner MU, Sander C, Olbrich S, Sheldrick AJ, Schonknecht P, Hegerl U, Himmerich H (2011) Prestimulus vigilance predicts response speed in an easy visual discrimination task. Behav Brain Funct 7:31. doi: 10.1186/1744-9081-7-31 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M (2009) Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex 19(3):712–723. doi: 10.1093/cercor/bhn120 PubMedCrossRefGoogle Scholar
  75. Moreno S, Bialystok E, Barac R, Schellenberg EG, Cepeda NJ, Chau T (2011) Short-term music training enhances verbal intelligence and executive function. Psychol Sci 22(11):1425–1433. doi: 10.1177/0956797611416999 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Moreno S, Wodniecka Z, Tays W, Alain C, Bialystok E (2014) Inhibitory control in bilinguals and musicians: event related potential (ERP) evidence for experience-specific effects. PLoS ONE 9(4):e94169. doi: 10.1371/journal.pone.0094169 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Muente TF, Altenmueller E, Jaencke L (2002) The musician’s brain as a model of neuroplasticity. Nat Neurosci 3:473–478Google Scholar
  78. Noh E, Herzmann G, Curran T, de Sa VR (2014) Using single-trial EEG to predict and analyze subsequent memory. NeuroImage 84:712–723. doi: 10.1016/j.neuroimage.2013.09.028 PubMedCrossRefGoogle Scholar
  79. Otten LJ, Henson RN, Rugg MD (2002) State-related and item-related neural correlates of successful memory encoding. Nat Neurosci 5(12):1339–1344. doi: 10.1038/nn967 PubMedCrossRefGoogle Scholar
  80. Otten LJ, Quayle AH, Akram S, Ditewig TA, Rugg MD (2006) Brain activity before an event predicts later recollection. Nat Neurosci 9(4):489–491. doi: 10.1038/nn1663 PubMedCrossRefGoogle Scholar
  81. Otten LJ, Quayle AH, Puvaneswaran B (2010) Prestimulus subsequent memory effects for auditory and visual events. J Cogn Neurosci 22(6):1212–1223. doi: 10.1162/jocn.2009.21298 PubMedCrossRefGoogle Scholar
  82. Papenberg G, Hammerer D, Muller V, Lindenberger U, Li SC (2013) Lower theta inter-trial phase coherence during performance monitoring is related to higher reaction time variability: a lifespan study. NeuroImage 83:912–920. doi: 10.1016/j.neuroimage.2013.07.032 PubMedCrossRefGoogle Scholar
  83. Park H, Rugg MD (2010) Prestimulus hippocampal activity predicts later recollection. Hippocampus 20(1):24–28. doi: 10.1002/hipo.20663 PubMedPubMedCentralGoogle Scholar
  84. Peller KA, Wagner AD (2002) Observing the transformation of experience into memory. Trends Cogn Sci 6(2):93–102CrossRefGoogle Scholar
  85. Peretz I, Zatorre RJ (2005) Brain organization for music processing. Annu Rev Psychol 56:89–114. doi: 10.1146/annurev.psych.56.091103.070225 PubMedCrossRefGoogle Scholar
  86. Posner MI, Dehaene S (1994) Attentional networks. Trends Neurosci 17(2):75–79PubMedCrossRefGoogle Scholar
  87. Proverbio AM, Manfredi M, Zani A, Adorni R (2013) Musical expertise affects neural bases of letter recognition. Neuropsychologia 51(3):538–549. doi: 10.1016/j.neuropsychologia.2012.12.001 PubMedCrossRefGoogle Scholar
  88. Proverbio AM, Calbi M, Manfredi M, Zani A (2014) Audio-visuomotor processing in the musician’s brain: an ERP study on professional violinists and clarinetists. Sci Rep 4:5866. doi: 10.1038/srep05866 PubMedGoogle Scholar
  89. Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci 25(2):603–610. doi: 10.1111/j.1460-9568.2007.05278.x PubMedCrossRefGoogle Scholar
  90. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22(11):2917–2926. doi: 10.1111/j.1460-9568.2005.04482.x PubMedCrossRefGoogle Scholar
  91. Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5(7):688–694. doi: 10.1038/nn871 PubMedCrossRefGoogle Scholar
  92. Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18. doi: 10.1016/j.tins.2008.09.012 PubMedCrossRefGoogle Scholar
  93. Schulze K, Koelsch S (2012) Working memory for speech and music. Ann N Y Acad Sci 1252:229–236. doi: 10.1111/j.1749-6632.2012.06447.x PubMedCrossRefGoogle Scholar
  94. Schulze K, Mueller K, Koelsch S (2011) Neural correlates of strategy use during auditory working memory in musicians and non-musicians. Eur J Neurosci 33(1):189–196. doi: 10.1111/j.1460-9568.2010.07470.x PubMedCrossRefGoogle Scholar
  95. Senkowski D, Molholm S, Gomez-Ramirez M, Foxe JJ (2006) Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping study. Cereb Cortex 16(11):1556–1565. doi: 10.1093/cercor/bhj091 PubMedCrossRefGoogle Scholar
  96. Sluming V, Brooks J, Howard M, Downes JJ, Roberts N (2007) Broca’s area supports enhanced visuospatial cognition in orchestral musicians. J Neurosci 27(14):3799–3806. doi: 10.1523/JNEUROSCI.0147-07.2007 PubMedCrossRefGoogle Scholar
  97. Strauss A, Wostmann M, Obleser J (2014) Cortical alpha oscillations as a tool for auditory selective inhibition. Front Hum Neurosci 8:350. doi: 10.3389/fnhum.2014.00350 PubMedPubMedCentralGoogle Scholar
  98. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26(37):9494–9502. doi: 10.1523/JNEUROSCI.0875-06.2006 PubMedCrossRefGoogle Scholar
  99. Volberg G, Kliegl K, Hanslmayr S, Greenlee MW (2009) EEG alpha oscillations in the preparation for global and local processing predict behavioral performance. Hum Brain Mapp 30(7):2173–2183. doi: 10.1002/hbm.20659 PubMedCrossRefGoogle Scholar
  100. von Stein A, Chiang C, Koenig P (2000) Top-down processing mediated by interareal synchronization. PNAS 97(26):14748–14753CrossRefGoogle Scholar
  101. Waldmann H-C (2008) Kurzformen des HAWIK-IV: statistische Bewertung in verschiedenen Anwendungsszenarien. Diagnostica 54(4):202–210. doi: 10.1026/0012-1924.54.4.202 CrossRefGoogle Scholar
  102. Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7(12):553–559. doi: 10.1016/j.tics.2003.10.012 PubMedCrossRefGoogle Scholar
  103. Wechsler D (1997) Wechsler adult intelligence scale—3rd edition (WAIS-3). Harcourt Assessment, San AntonioGoogle Scholar
  104. Williamson VJ, Baddeley AD, Hitch GJ (2010) Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: comparing phonological similarity and pitch proximity. Mem Cognit 38(2):163–175. doi: 10.3758/MC.38.2.163 PubMedCrossRefGoogle Scholar
  105. Zakrzewska MZ, Brzezicka A (2014) Working memory capacity as a moderator of load-related frontal midline theta variability in Sternberg task. Front Hum Neurosci 8:399. doi: 10.3389/fnhum.2014.00399 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558. doi: 10.1038/nrn2152 PubMedCrossRefGoogle Scholar
  107. Zuk J, Benjamin C, Kenyon A, Gaab N (2014) Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS ONE 9(6):e99868. doi: 10.1371/journal.pone.0099868 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carina Klein
    • 1
  • Laura Diaz Hernandez
    • 2
    • 3
  • Thomas Koenig
    • 2
    • 3
  • Mara Kottlow
    • 2
    • 3
    • 4
  • Stefan Elmer
    • 1
  • Lutz Jäncke
    • 1
    • 5
    • 6
    • 7
    • 8
  1. 1.Division Neuropsychology, Institute of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Translational Research CenterUniversity Hospital of PsychiatryBernSwitzerland
  3. 3.Center of Cognition, Learning and MemoryUniversity of BernBernSwitzerland
  4. 4.Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
  5. 5.International Normal Aging and Plasticity Imaging Center (INAPIC)University of ZurichZurichSwitzerland
  6. 6.Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
  7. 7.University Research Priority Program (URPP), Dynamic of Healthy AgingUniversity of ZurichZurichSwitzerland
  8. 8.Department of Special EducationKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations