Advertisement

Brain Topography

, Volume 29, Issue 1, pp 162–181 | Cite as

Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy

  • Marcel Heers
  • Rasheda A. Chowdhury
  • Tanguy Hedrich
  • François Dubeau
  • Jeffery A. Hall
  • Jean-Marc Lina
  • Christophe Grova
  • Eliane Kobayashi
Original Paper

Abstract

Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.

Keywords

Electroencephalography (EEG) Electric source imaging (ESI) Focal epilepsy Intracranial EEG Magnetoencephalography (MEG) Magnetic source imaging (MSI) 

Notes

Acknowledgments

The authors thank Ms. Manon Robert for her excellent assistance in EEG/MEG data acquisition. This project was supported by the CIHR (MOP-93614), Fonds de la recherche en santé du Quebec, Centres of Excellence for Commercialization and Research (CECR), American Epilepsy Society Early Career Physicians-Scientist Award and by the Savoy-Foundation. MH currently receives funding from the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant number EXC 1086), which has not however supported any data acquisition or analysis related to the study.

Conflict of interest

None of the authors states any conflict of interest.

References

  1. Amblard C, Lapalme E, Lina JM (2004) Biomagnetic source detection by maximum entropy and graphical models. IEEE Trans Biomed Eng 51:427–442. doi: 10.1109/TBME.2003.820999 PubMedCrossRefGoogle Scholar
  2. Andrade-Valenca LP, Dubeau F, Mari F, Zelmann R, Gotman J (2011) Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology 77:524–531. doi: 10.1212/WNL.0b013e318228bee2 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Processing Magazine 18:14–30. doi: 10.1109/79.962275 CrossRefGoogle Scholar
  4. Bast T et al (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45:621–631PubMedCrossRefGoogle Scholar
  5. Becker H et al (2014) EEG extended source localization: tensor-based vs. conventional methods. Neuroimage 96:143–157. doi: 10.1016/j.neuroimage.2014.03.043 PubMedCrossRefGoogle Scholar
  6. Birot G, Albera L, Wendling F, Merlet I (2011) Localization of extended brain sources from EEG/MEG: the ExSo-MUSIC approach. Neuroimage 56:102–113. doi: 10.1016/j.neuroimage.2011.01.054 PubMedCrossRefGoogle Scholar
  7. Brodbeck V et al (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134:2887–2897. doi: 10.1093/brain/awr243 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chen F, Hallez H, Staelens S (2010) Influence of skull conductivity perturbations on EEG dipole source analysis. Med Phys 37:4475. doi: 10.1118/1.3466831 PubMedCrossRefGoogle Scholar
  9. Chowdhury R, Zerouali Y, Lina JM, Kobayashi E, Grova C (2012) Multimodal EEG/MEG fusion within the maximum entropy on the mean (MEM) framework. In: 18th international conference on biomagnetism, BIOMAG 2012, ParisGoogle Scholar
  10. Chowdhury R et al (2014) Localization of the spatial extent of the generators of epileptic discharges in EEG and MEG: comparison between 4-ExSo-MUSIC and MEM approaches. In: 19th international conference on biomagnetism, BIOMAG 2014, Halifax, CanadaGoogle Scholar
  11. Chowdhury RA, Lina J-M, Kobayashi E, Grova C (2013) MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical Bayesian approaches. PLoS One 8:e55969. doi: 10.1371/journal.pone.0055969.s004 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dalal SS, Rampp S, Willomitzer F, Ettl S (2014) Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance. Frontiers in neuroscience 8:42. doi: 10.3389/fnins.2014.00042 PubMedCrossRefPubMedCentralGoogle Scholar
  13. de Gooijer-van de Groep KL, Leijten FSS, Ferrier CH, Huiskamp GJM (2013) Inverse modeling in magnetic source imaging: comparison of MUSIC, SAM(g2), and sLORETA to interictal intracranial EEG. Human Brain Mapping 34:2032–2044. doi: 10.1002/hbm.22049 PubMedCrossRefGoogle Scholar
  14. De Tiege X et al (2012) Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. Journal of Neurology, Neurosurgery & Psychiatry. doi: 10.1136/jnnp-2011-301166 Google Scholar
  15. Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483. doi: 10.1006/nimg.2002.1090 PubMedCrossRefGoogle Scholar
  16. Friston KJ et al (2008) Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39:1104–1120. doi: 10.1016/j.neuroimage.2007.09.048 PubMedCrossRefGoogle Scholar
  17. Genow A et al (2004) Epilepsy surgery, resection volume and MSI localization in lesional frontal lobe epilepsy. NeuroImage 21:444–449. doi: 10.1016/j.neuroimage.2003.08.029 PubMedCrossRefGoogle Scholar
  18. Goldenholz DM, Ahlfors SP, Hämäläinen MS, Sharon D, Ishitobi M, Vaina LM, Stufflebeam SM (2009) Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography. Hum Brain Mapp 30:1077–1086. doi: 10.1002/hbm.20571 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Goncalves SI, de Munck JC, Verbunt JPA, Bijma F, Heethaar RM, Lopes da Silva F (2003) In vivo measurement of the brain and skull resistivities using an eit-based method and realistic models for the head. IEEE Trans Bio-med Eng 50:754–767. doi: 10.1109/TBME.2003.812164 CrossRefGoogle Scholar
  20. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomedical engineering online 9:45. doi: 10.1186/1475-925X-9-45 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Grova C, Daunizeau J, Lina JM, Benar CG, Benali H, Gotman J (2006) Evaluation of EEG localization methods using realistic simulations of interictal spikes. Neuroimage 29:734–753. doi: 10.1016/j.neuroimage.2005.08.053 PubMedCrossRefGoogle Scholar
  22. Grova C et al (2013) Evaluation of the spatial extent of the sources of epileptic spikes in MEG. In: International conference on basic and clinical multimodal imaging (BACI), Geneva, 5–8 Sept 2013Google Scholar
  23. Hämäläinen MS (1992) Magnetoencephalography: a tool for functional brain imaging. Brain Topogr 5:95–102PubMedCrossRefGoogle Scholar
  24. Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Compu 32:35–42CrossRefGoogle Scholar
  25. Heers M, Hedrich T, An D, Dubeau F, Gotman J, Grova C, Kobayashi E (2014) Spatial correlation of hemodynamic changes related to interictal epileptic discharges with electric and magnetic source imaging. Hum Brain Mapp 35:4396–4414. doi: 10.1002/hbm.22482 PubMedCrossRefGoogle Scholar
  26. Hillebrand A, Barnes GR (2011) Practical constraints on estimation of source extent with MEG beamformers. Neuroimage 54:2732–2740. doi: 10.1016/j.neuroimage.2010.10.036 PubMedCrossRefPubMedCentralGoogle Scholar
  27. Iwasaki M, Pestana E, Burgess RC, Lüders HO, Shamoto H, Nakasato N (2005) Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography. Epilepsia 46:59–68. doi: 10.1111/j.0013-9580.2005.21104.x PubMedCrossRefGoogle Scholar
  28. Jung J et al (2013) The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain 136:3176–3186. doi: 10.1093/brain/awt213 PubMedCrossRefPubMedCentralGoogle Scholar
  29. Knowlton RC et al (2008) Functional imaging: II. Prediction of epilepsy surgery outcome Annals of Neurology 64:35–41PubMedGoogle Scholar
  30. Kobayashi K, Yoshinaga H, Ohtsuka Y, Gotman J (2005) Dipole modeling of epileptic spikes can be accurate or misleading. Epilepsia 46:397–408. doi: 10.1111/j.0013-9580.2005.31404.x PubMedCrossRefGoogle Scholar
  31. Lantz G, Grave de Peralta R, Spinelli L, Seeck M, Michel CM (2003) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114:63–69PubMedCrossRefGoogle Scholar
  32. Lapalme E, Lina JM, Mattout J (2006) Data-driven parceling and entropic inference in MEG. Neuroimage 30:160–171. doi: 10.1016/j.neuroimage.2005.08.067 PubMedCrossRefGoogle Scholar
  33. Lina JM, Chowdhury R, Lemay E, Kobayashi E, Grova C (2014) Wavelet-based localization of oscillatory sources from magnetoencephalography data. IEEE Trans Biomed Eng 61:2350–2364. doi: 10.1109/TBME.2012.2189883 PubMedCrossRefGoogle Scholar
  34. Lu Y, Yang L, Worrell GA, Brinkmann B, Nelson C, He B (2012) Dynamic imaging of seizure activity in pediatric epilepsy patients. Clin Neurophysiol 123:2122–2129. doi: 10.1016/j.clinph.2012.04.021 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Mamelak AN, Lopez N, Akhtari M, Sutherling WW (2002) Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J Neurosurg 97:865–873. doi: 10.3171/jns.2002.97.4.0865 PubMedCrossRefGoogle Scholar
  36. Mangin J-F, Frouin V, Bloch I, Régis J, López-Krahe J (1995) From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5:297–318. doi: 10.1007/BF01250286 CrossRefGoogle Scholar
  37. Mattout J, Pelegrini-Issac M, Garnero L, Benali H (2005) Multivariate source prelocalization (MSP): use of functionally informed basis functions for better conditioning the MEG inverse problem. Neuroimage 26:356–373. doi: 10.1016/j.neuroimage.2005.01.026 PubMedCrossRefGoogle Scholar
  38. Megevand P et al (2014) Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry 85:38–43. doi: 10.1136/jnnp-2013-305515 PubMedCrossRefGoogle Scholar
  39. Mikuni N et al (1997) Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. NeuroImage 5:298–306. doi: 10.1006/nimg.1997.0272 PubMedCrossRefGoogle Scholar
  40. Molins A, Stufflebeam SM, Brown EN, Hamalainen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. Neuroimage 42:1069–1077. doi: 10.1016/j.neuroimage.2008.05.064 PubMedCrossRefGoogle Scholar
  41. Oishi M, Otsubo H, Kameyama S, Morota N, Masuda H, Kitayama M, Tanaka R (2002) Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 43:1390–1395PubMedCrossRefGoogle Scholar
  42. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65PubMedCrossRefGoogle Scholar
  43. Rikir E et al (2014) Electrical source imaging in cortical malformation-related epilepsy: a prospective EEG-SEEG concordance study. Epilepsia 55:918–932. doi: 10.1111/epi.12591 PubMedCrossRefGoogle Scholar
  44. Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B (2014) Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol. doi: 10.1016/j.clinph.2014.05.038 PubMedGoogle Scholar
  45. Steinstrater O, Sillekens S, Junghoefer M, Burger M, Wolters CH (2010) Sensitivity of beamformer source analysis to deficiencies in forward modeling. Hum Brain Mapp 31:1907–1927. doi: 10.1002/hbm.20986 PubMedCrossRefGoogle Scholar
  46. Sutherling WW, Mamelak AN, Thyerlei D, Maleeva T, Minazad Y, Philpott L, Lopez N (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71:990–996. doi: 10.1212/01.wnl.0000326591.29858.1a PubMedCrossRefPubMedCentralGoogle Scholar
  47. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716. doi: 10.1155/2011/879716 PubMedPubMedCentralGoogle Scholar
  48. Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46:669–676. doi: 10.1111/j.1528-1167.2005.11404.x PubMedCrossRefGoogle Scholar
  49. von Ellenrieder N, Beltrachini L, Muravchik CH, Gotman J (2014a) Extent of cortical generators visible on the scalp: effect of a subdural grid. Neuroimage. doi: 10.1016/j.neuroimage.2014.08.009 Google Scholar
  50. von Ellenrieder N, Beltrachini L, Perucca P, Gotman J (2014b) Size of cortical generators of epileptic interictal events and visibility on scalp EEG. Neuroimage 94:47–54. doi: 10.1016/j.neuroimage.2014.02.032 CrossRefGoogle Scholar
  51. Wang G, Worrell G, Yang L, Wilke C, He B (2011) Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin Neurophysiol 122:1098–1105. doi: 10.1016/j.clinph.2010.10.043 PubMedCrossRefPubMedCentralGoogle Scholar
  52. Wennberg R, Cheyne D (2014a) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clin Neurophysiol 125:886–902. doi: 10.1016/j.clinph.2013.09.042 PubMedCrossRefGoogle Scholar
  53. Wennberg R, Cheyne D (2014b) Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus. Clin Neurophysiol 125:903–918. doi: 10.1016/j.clinph.2013.08.032 PubMedCrossRefGoogle Scholar
  54. Yang L, Wilke C, Brinkmann B, Worrell GA, He B (2011) Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage 56:1908–1917. doi: 10.1016/j.neuroimage.2011.03.043 PubMedCrossRefPubMedCentralGoogle Scholar
  55. Zelmann R, Lina JM, Schulze-Bonhage A, Gotman J, Jacobs J (2013) Scalp EEG is not a blur: it can see high frequency oscillations although their generators are small. Brain Topogr. doi: 10.1007/s10548-013-0321-y PubMedCentralGoogle Scholar
  56. Zhu M, Zhang W, Dickens DL, King JA, Ding L (2013) Sparse MEG source imaging for reconstructing dynamic sources of interictal spikes in partial epilepsy. J Clin Neurophysiol 30:313–328. doi: 10.1097/WNP.0b013e31829dda27 PubMedCrossRefGoogle Scholar
  57. Zhu M, Zhang W, Dickens DL, Ding L (2014) Reconstructing spatially extended brain sources via enforcing multiple transform sparseness. Neuroimage 86:280–293. doi: 10.1016/j.neuroimage.2013.09.070 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marcel Heers
    • 1
    • 2
  • Rasheda A. Chowdhury
    • 3
  • Tanguy Hedrich
    • 3
  • François Dubeau
    • 1
  • Jeffery A. Hall
    • 1
  • Jean-Marc Lina
    • 4
  • Christophe Grova
    • 1
    • 3
    • 4
    • 5
  • Eliane Kobayashi
    • 1
  1. 1.Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  2. 2.Epilepsy CenterUniversity Medical Center FreiburgFreiburgGermany
  3. 3.Multimodal Functional Imaging Laboratory, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
  4. 4.Physnum-TeamCentre de Recherches MathématiquesMontrealCanada
  5. 5.Physics Department and PERFORM CentreConcordia UniversityMontrealCanada

Personalised recommendations