Brain Topography

, Volume 28, Issue 1, pp 62–65 | Cite as

Assessing the Spatial Precision of SE and GE-BOLD Contrast at 7 Tesla

  • Rosa M. Sanchez Panchuelo
  • Denis Schluppeck
  • Jack Harmer
  • Richard Bowtell
  • Susan Francis
Brief Communication

Abstract

Spin echo (SE) EPI offers an alternative to standard gradient echo (GE) EPI for functional MRI. SE-EPI offers improved spatial specificity, since signal changes originate from the microvasculature, but its lower functional sensitivity has limited the usage of this sequence in fMRI experiments. Differential fMRI paradigms, in which two closely matched stimulus conditions are used, can suppress the contribution from veins, thus also offering improved spatial specificity compared to conventional block or event-related designs with long “rest” periods. In this study, we employed a differential fMRI paradigm to stimulate bands of primary visual cortex with pre-defined widths by using visual stimuli comprised of complementary rings of contrast-reversing checkerboard patterns (8 Hz). This paradigm was used to investigate the spatial specificity of GE and SE-BOLD contrast at 7T. Results show that the contrast-to-noise ratio (CNR) is larger for GE-EPI data than for the SE-EPI data for band widths in the range 1.7–6.6 mm, however as the width of the band decreases the CNR for GE and SE sequences converges. These results suggest that when using a differential mapping paradigm, GE-BOLD contrast is better for studying functional features that are larger than ~1.5 mm in size.

Keywords

fMRI SE-BOLD GE-BOLD Specificity 7 Tesla 

Supplementary material

10548_2014_420_MOESM1_ESM.docx (116 kb)
Supplementary material 1 (DOCX 115 kb)

References

  1. Boyacioglu R, Schulz J, Mueller NCJ, Koopmans PJ, Barth M, Norris D (2014) Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: a comparison with gradient-echo EPI using a color-word Stroop task. NeuroImage 97:142–150Google Scholar
  2. Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32(2):359–374PubMedCrossRefGoogle Scholar
  3. Harmer J, Sanchez-Panchuelo RM, Bowtell R, Francis ST (2012) Spatial location and strength of BOLD activation in high-spatial-resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T. NMR Biomed 25(5):717–725. doi:10.1002/nbm.1783 PubMedCrossRefGoogle Scholar
  4. Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26(51):13128–13142. doi:10.1523/JNEUROSCI.1657-06.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77(5):2780–2787PubMedGoogle Scholar
  6. Olman CA, Van de Moortele PF, Ugurbil K (2004) Point spread function for gradient-echo and spin-echo BOLD fMRI at 7 Tesla. Proceedings 12th Meeting ISMRM 11:1066Google Scholar
  7. Parkes LM, Schwarzbach JV, Bouts AA, Deckers RH, Pullens P, Kerskens CM, Norris DG (2005) Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn Reson Med 54(6):1465–1472. doi:10.1002/mrm.20712 PubMedCrossRefGoogle Scholar
  8. Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52(4):1334–1346. doi:10.1016/j.neuroimage.2010.05.005 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Schluppeck, Merriam DE, Sanchez Panchuelo RM, Francis S, Bowtell R, Velasco P, Inati S, Heeger DJ (2010) Assessing the spatial precision of high-resolution echo-planar functional MRI at 3T and 7T. 40th Annual Meeting of Society for Neuroscience. http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=b7dc0af5-6d97-4933-a962-fd173dc12831&cKey=42e8ff90-fe1b-481d-9a99-34568b3c6de9&mKey=e5d5c83f-ce2d-4d71-9dd6-fc7231e090fb
  10. Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35(2):539–552. doi:10.1016/j.neuroimage.2006.12.030 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714(2):265–270PubMedCrossRefGoogle Scholar
  12. Yacoub E, Shmuel A, Logothetis N, Ugurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37(4):1161–1177. doi:10.1016/j.neuroimage.2007.05.020 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rosa M. Sanchez Panchuelo
    • 1
  • Denis Schluppeck
    • 2
  • Jack Harmer
    • 1
    • 3
  • Richard Bowtell
    • 1
  • Susan Francis
    • 1
  1. 1.Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University ParkUniversity of NottinghamNottinghamUK
  2. 2.Visual Neuroscience Group, School of PsychologyUniversity of NottinghamNottinghamUK
  3. 3.Division of Imaging Sciences and Biomedical EngineeringKings College LondonLondonUK

Personalised recommendations