Advertisement

Brain Topography

, Volume 28, Issue 6, pp 904–914 | Cite as

Quantification of Interictal Neuromagnetic Activity in Absence Epilepsy with Accumulated Source Imaging

  • Jing Xiang
  • Jeffrey R. Tenney
  • Abraham M. Korman
  • Kimberly Leiken
  • Douglas F. Rose
  • Elana Harris
  • Weihong Yuan
  • Paul S. Horn
  • Katherine Holland
  • David W. Loring
  • Tracy A. Glauser
Original Paper

Abstract

Aberrant brain activity in childhood absence epilepsy (CAE) during seizures has been well recognized as synchronous 3 Hz spike-and-wave discharges on electroencephalography. However, brain activity from low- to very high-frequency ranges in subjects with CAE between seizures (interictal) has rarely been studied. Using a high-sampling rate magnetoencephalography (MEG) system, we studied ten subjects with clinically diagnosed but untreated CAE in comparison with age- and gender-matched controls. MEG data were recorded from all subjects during the resting state. MEG sources were assessed with accumulated source imaging, a new method optimized for localizing and quantifying spontaneous brain activity. MEG data were analyzed in nine frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–55 Hz), high-gamma (65–90 Hz), ripple (90–200 Hz), high-frequency oscillation (HFO, 200–1,000 Hz), and very high-frequency oscillation (VHFO, 1,000–2,000 Hz). MEG source imaging revealed that subjects with CAE had higher odds of interictal brain activity in 200–1,000 and 1,000–2,000 Hz in the parieto-occipito-temporal junction and the medial frontal cortices as compared with controls. The strength of the interictal brain activity in these regions was significantly elevated in the frequency bands of 90–200, 200–1,000 and 1,000–2,000 Hz for subjects with CAE as compared with controls. The results indicate that CAE has significantly aberrant brain activity between seizures that can be noninvasively detected. The measurements of high-frequency neuromagnetic oscillations may open a new window for investigating the cerebral mechanisms of interictal abnormalities in CAE.

Keywords

Childhood absence epilepsy Magnetoencephalography High frequency oscillation Magnetic source imaging Seizure 

Notes

Acknowledgments

This study was partially supported by a Trustee Grant from Cincinnati Children’s Hospital Medical Center and Grant Number R21NS072817 from the National Institute of Neurological Disorders and Stroke (NINDS), the National Institutes of Health. Portions of this study were funded by a “Taking Flight” award from the Citizens United for Research in Epilepsy (CURE) (J.R.T.). We thank Ms. Hisako Fujiwara and Dr. Nat Hemasilpin for helping with MEG data acquisition. We thank all participants and their families for their time and support.

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. Amor F, Baillet S, Navarro V, Adam C, Martinerie J, Quyen Mle V (2009) Cortical local and long-range synchronization interplay in human absence seizure initiation. Neuroimage 45(3):950–962CrossRefPubMedGoogle Scholar
  2. Bai X, Guo J, Killory B, Vestal M, Berman R, Negishi M, Danielson N, Novotny EJ, Constable RT, Blumenfeld H (2011) Resting functional connectivity between the hemispheres in childhood absence epilepsy. Neurology 76(23):1960–1967PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bragin A, Wilson CL, Almajano J, Mody I, Engel J Jr (2004) High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 45(9):1017–1023CrossRefPubMedGoogle Scholar
  4. Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST, Morris PG (2007) Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34(4):1454–1465CrossRefPubMedGoogle Scholar
  5. Caraballo RH, Darra F, Fontana E, Garcia R, Monese E, Dalla Bernardina B (2011) Absence seizures in the first 3 years of life: an electroclinical study of 46 cases. Epilepsia 52(2):393–400PubMedGoogle Scholar
  6. Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source modeling in epilepsy evaluations. J Clin Neurophysiol 27(6):360–371CrossRefPubMedGoogle Scholar
  7. Engel J Jr, da Silva FL (2012) High-frequency oscillations—where we are and where we need to go. Prog Neurobiol 98(3):316–318PubMedCentralCrossRefPubMedGoogle Scholar
  8. Engel J Jr, Bragin A, Staba R, Mody I (2009) High-frequency oscillations: what is normal and what is not? Epilepsia 50(4):598–604CrossRefPubMedGoogle Scholar
  9. Epilepsy CoCaTotILA (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League against Epilepsy. Epilepsia 30(4):389–399CrossRefGoogle Scholar
  10. Fischer MJ, Rampp S, Scheler G, Stefan H (2008) A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res 82(2–3):238–239 author reply 240–231CrossRefPubMedGoogle Scholar
  11. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Capparelli EV, Adamson PC, Childhood Absence Epilepsy Study G (2010) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 362(9):790–799CrossRefGoogle Scholar
  12. Gotman J (2010) High frequency oscillations: the new EEG frontier? Epilepsia 51(Suppl 1):63–65PubMedCentralCrossRefPubMedGoogle Scholar
  13. Haegelen C, Perucca P, Chatillon CE, Andrade-Valenca L, Zelmann R, Jacobs J, Collins DL, Dubeau F, Olivier A, Gotman J (2013) High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia 54(5):848–857PubMedCentralCrossRefPubMedGoogle Scholar
  14. Huang MX, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, D’Andrea J, Levy M, Holland M, Song T, Ge S, Hwang E, Yoo K, Cui L, Baker DG, Trauner D, Coimbra R, Lee RR (2009) Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma 26(8):1213–1226CrossRefPubMedGoogle Scholar
  15. Hughes SW, Lorincz ML, Parri HR, Crunelli V (2011) Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states. Prog Brain Res 193:145–162PubMedCentralCrossRefPubMedGoogle Scholar
  16. Jacobs J, Staba R, Asano E, Otsubo H, Wu JY, Zijlmans M, Mohamed I, Kahane P, Dubeau F, Navarro V, Gotman J (2012) High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 98(3):302–315PubMedCentralCrossRefPubMedGoogle Scholar
  17. Kerber K, Dumpelmann M, Schelter B, LeVan P, Korinthenberg R, Schulze-Bonhage A, Jacobs J (2014) Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures. Clin Neurophysiol 125(7):1339–45Google Scholar
  18. Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M, Guo J, Berman R, Danielson N, Trejo J, Shisler D, Novotny EJ Jr, Constable RT, Blumenfeld H (2011) Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage 56(4):2209–2217PubMedCentralCrossRefPubMedGoogle Scholar
  19. Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Bio-Med Eng 50(5):540–548CrossRefGoogle Scholar
  20. Mariani E, Rossi LN, Vajani S (2011) Interictal paroxysmal EEG abnormalities in childhood absence epilepsy. Seizure 20(4):299–304CrossRefPubMedGoogle Scholar
  21. Menendez de la Prida L, Trevelyan AJ (2011) Cellular mechanisms of high frequency oscillations in epilepsy: on the diverse sources of pathological activities. Epilepsy Res 97(3):308–317CrossRefPubMedGoogle Scholar
  22. Miao A, Xiang J, Tang L, Ge H, Liu H, Wu T, Chen Q, Hu Z, Lu X, Wang X (2014) Using ictal high-frequency oscillations (80–500 Hz) to localize seizure onset zones in childhood absence epilepsy: a MEG study. Neurosci Lett 566:21–26CrossRefPubMedGoogle Scholar
  23. Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, Gotman J (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51(10):2000–2010PubMedCentralCrossRefPubMedGoogle Scholar
  24. Mullen SA, Suls A, De Jonghe P, Berkovic SF, Scheffer IE (2010) Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology 75(5):432–440CrossRefPubMedGoogle Scholar
  25. Ogura K, Maegaki Y, Koeda T (2005) EEG evaluation of fixation-off sensitivity in eyelid myoclonia with absences. Pediatr Neurol 33(2):142–145CrossRefPubMedGoogle Scholar
  26. Ponten SC, Douw L, Bartolomei F, Reijneveld JC, Stam CJ (2009) Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses. Exp Neurol 217(1):197–204CrossRefPubMedGoogle Scholar
  27. Rampp S, Stefan H (2007) Magnetoencephalography in presurgical epilepsy diagnosis. Expert Rev Med Devices 4(3):335–347CrossRefPubMedGoogle Scholar
  28. Richardson MP (2011) New observations may inform seizure models: very fast and very slow oscillations. Prog Biophys Mol Biol 105(1–2):5–13CrossRefPubMedGoogle Scholar
  29. Schubert R (2005) Attention deficit disorder and epilepsy. Pediatr Neurol 32(1):1–10CrossRefPubMedGoogle Scholar
  30. Sheth RD, Abram HS (2010) Absence epilepsy with focal clinical and electrographic seizures. Semin Pediatr Neurol 17(1):39–43CrossRefPubMedGoogle Scholar
  31. Sinclair DB, Unwala H (2007) Absence epilepsy in childhood: electroencephalography (EEG) does not predict outcome. J Child Neurol 22(7):799–802CrossRefPubMedGoogle Scholar
  32. Sohal VS (2012) Insights into cortical oscillations arising from optogenetic studies. Biol Psychiatry 71(12):1039–1045PubMedCentralCrossRefPubMedGoogle Scholar
  33. Stacey WC, Krieger A, Litt B (2011) Network recruitment to coherent oscillations in a hippocampal computer model. J Neurophysiol 105(4):1464–1481PubMedCentralCrossRefPubMedGoogle Scholar
  34. Stroganova TA, Orekhova EV, Prokofyev AO, Tsetlin MM, Gratchev VV, Morozov AA, Obukhov YV (2012) High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders. Cortex 48(6):701–717CrossRefPubMedGoogle Scholar
  35. Tenney JR, Fujiwara H, Horn PS, Jacobson SE, Glauser TA, Rose DF (2013) Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Res 106(1–2):113–122CrossRefPubMedGoogle Scholar
  36. Uhlhaas PJ, Pipa G, Neuenschwander S, Wibral M, Singer W (2011) A new look at gamma? High- (>60 Hz) gamma-band activity in cortical networks: function, mechanisms and impairment. Prog Biophys Mol Biol 105(1–2):14–28CrossRefPubMedGoogle Scholar
  37. Urrestarazu E, Chander R, Dubeau F, Gotman J (2007) Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain 130(Pt 9):2354–2366CrossRefPubMedGoogle Scholar
  38. Vrba J, Robinson SE (2001) Signal processing in magnetoencephalography. Methods 25(2):249–271CrossRefPubMedGoogle Scholar
  39. Wood H (2011) High-frequency oscillations pinpoint the seizure-onset zone. Nat Rev Neurol 7(9):475CrossRefPubMedGoogle Scholar
  40. Worrell G, Gotman J (2011) High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies. Biomark Med 5(5):557–566PubMedCentralCrossRefPubMedGoogle Scholar
  41. Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M (2012) Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 98(3):265–278PubMedCentralCrossRefPubMedGoogle Scholar
  42. Xiang J, Liu Y, Wang Y, Kirtman EG, Kotecha R, Chen Y, Huo X, Fujiwara H, Hemasilpin N, Lee K, Mangano FT, Leach J, Jones B, DeGrauw T, Rose D (2009) Frequency and spatial characteristics of high-frequency neuromagnetic signals in childhood epilepsy. Epileptic Disord 11(2):113–125PubMedGoogle Scholar
  43. Xiang J, Wang Y, Chen Y, Liu Y, Kotecha R, Huo X, Rose DF, Fujiwara H, Hemasilpin N, Lee K, Mangano FT, Jones B, DeGrauw T (2010) Noninvasive localization of epileptogenic zones with ictal high-frequency neuromagnetic signals. J Neurosurg Pediatr 5(1):113–122CrossRefPubMedGoogle Scholar
  44. Xiang J, Luo Q, Kotecha R, Korman A, Zhang F, Luo H, Fujiwara H, Hemasilpin N, Rose DF (2014) Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals. Front Neuroinf 8(57):1–17Google Scholar
  45. Yao B, Salenius S, Yue GH, Brown RW, Liu JZ (2007) Effects of surface EMG rectification on power and coherence analyses: an EEG and MEG study. J Neurosci Methods 159(2):215–223CrossRefPubMedGoogle Scholar
  46. Zijlmans M, Jiruska P, Zelmann R, Leijten FS, Jefferys JG, Gotman J (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71(2):169–178PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jing Xiang
    • 1
    • 2
  • Jeffrey R. Tenney
    • 1
    • 2
  • Abraham M. Korman
    • 1
  • Kimberly Leiken
    • 1
  • Douglas F. Rose
    • 1
    • 2
  • Elana Harris
    • 3
  • Weihong Yuan
    • 4
  • Paul S. Horn
    • 2
    • 6
  • Katherine Holland
    • 2
  • David W. Loring
    • 5
  • Tracy A. Glauser
    • 2
  1. 1.MEG CenterCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of NeurologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Child & Adolescent PsychiatryCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Departments of Neurology and PediatricsEmory University School of MedicineAtlantaUSA
  6. 6.Division of Biostatistics and EpidemiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations