Brain Topography

, Volume 28, Issue 5, pp 760–770 | Cite as

Neural Correlate of Anterograde Amnesia in Wernicke–Korsakoff Syndrome

  • Louis Nahum
  • Jean-Michel Pignat
  • Aurélie Bouzerda-Wahlen
  • Damien Gabriel
  • Maria Chiara Liverani
  • François Lazeyras
  • Radek Ptak
  • Jonas Richiardi
  • Sven Haller
  • Gabriel Thorens
  • Daniele F. Zullino
  • Adrian G. Guggisberg
  • Armin Schnider
Original Paper

Abstract

The neural correlate of anterograde amnesia in Wernicke–Korsakoff syndrome (WKS) is still debated. While the capacity to learn new information has been associated with integrity of the medial temporal lobe (MTL), previous studies indicated that the WKS is associated with diencephalic lesions, mainly in the mammillary bodies and anterior or dorsomedial thalamic nuclei. The present study tested the hypothesis that amnesia in WKS is associated with a disrupted neural circuit between diencephalic and hippocampal structures. High-density evoked potentials were recorded in four severely amnesic patients with chronic WKS, in five patients with chronic alcoholism without WKS, and in ten age matched controls. Participants performed a continuous recognition task of pictures previously shown to induce a left medial temporal lobe dependent positive potential between 250 and 350 ms. In addition, the integrity of the fornix was assessed using diffusion tensor imaging (DTI). WKS, but not alcoholic patients without WKS, showed absence of the early, left MTL dependent positive potential following immediate picture repetitions. DTI indicated disruption of the fornix, which connects diencephalic and hippocampal structures. The findings support an interpretation of anterograde amnesia in WKS as a consequence of a disconnection between diencephalic and MTL structures with deficient contribution of the MTL to rapid consolidation.

Keywords

Wernicke–Korsakoff syndrome Anterograde amnesia Fornix Medial temporal lobe DTI 

References

  1. Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci 22:425–444PubMedGoogle Scholar
  2. Antunez E, Estruch R, Cardenal C et al (1998) Usefulness of CT and MR imaging in the diagnosis of acute Wernicke’s encephalopathy. Am J Roentgenol 171:1131–1137CrossRefGoogle Scholar
  3. Army Individual Test Battery (1944) Manual of Directions and Scoring. War Department, Adjutant General’s Office, Washington, DCGoogle Scholar
  4. Aupée AM, Desgranges B, Eustache F et al (2001) Voxel-based mapping of brain hypometabolism in permanent amnesia with PET. Neuroimage 13:1164–1173PubMedCrossRefGoogle Scholar
  5. Barcellona-Lehmann S, Morand S, Bindschaedler C et al (2010) Abnormal cortical network activation in human amnesia: a high-resolution evoked potential study. Brain Topogr 23:72–81. doi:10.1007/s10548-009-0124-3 PubMedCrossRefGoogle Scholar
  6. Benson DF, Djenderedjian A, Miller BL et al (1996) Neural basis of confabulation. Neurology 46:1239–1243PubMedCrossRefGoogle Scholar
  7. Brown MW, Warburton EC, Aggleton JP (2010) Recognition memory: material, processes, and substrates. Hippocampus 20:1228–1244. doi:10.1002/hipo.20858 PubMedCrossRefGoogle Scholar
  8. Caulo M, Van Hecke J, Toma L et al (2005) Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome. Brain 128:1584–1594PubMedCrossRefGoogle Scholar
  9. Christie JE, Kean DM, Douglas RH et al (1988) Magnetic resonance imaging in pre-senile dementia of the Alzheimer-type, multi-infarct dementia and Korsakoff’s syndrome. Psychol Med 18:319–329PubMedCrossRefGoogle Scholar
  10. Colchester A, Kingsley D, Lasserson D et al (2001) Structural MRI Volumetric Analysis in Patients with Organic Amnesia, 1: methods and Comparative Findings Across Diagnostic Groups. J Neurol Neurosurg Psychiatry 71:13–22. doi:10.1136/jnnp.71.1.13 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427PubMedCentralPubMedCrossRefGoogle Scholar
  12. Crowder RG (1976) Principles of learning and memory. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  13. Fitzsimmons J, Kubicki M, Smith K et al (2009) Diffusion tractography of the fornix in schizophrenia. Schizophr Res 107:39–46. doi:10.1016/j.schres.2008.10.022 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198Google Scholar
  15. Gamper E (1928) Zur Frage der Polioencephalitis haemorrhagica der chronischen Alkoholiker. Anatomische Befunde beim alkoholischen Korsakow und ihre Beziehungen zum klinischen Bild. Dtsch Z Nervenheilk 102:122–129CrossRefGoogle Scholar
  16. Greene RL (1989) Spacing effects in memory: evidence for a two-process account. J Exp Psychol Learn Mem Cogn 15:371–377CrossRefGoogle Scholar
  17. Halavaara J, Brander A, Lyytinen J et al (2003) Wernicke’s encephalopathy: is diffusion-weighted MRI useful? Neuroradiology 45:519–523PubMedCrossRefGoogle Scholar
  18. Harding A, Halliday G, Caine D, Kril J (2000) Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123:141–154PubMedCrossRefGoogle Scholar
  19. Heiss WD, Pawlik G, Holthoff V et al (1992) PET correlates of normal and impaired memory functions. Cerebrovasc Brain Metab Rev 4:1–27PubMedGoogle Scholar
  20. Hornberger M, Wong S, Tan R et al (2012) In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer’s disease. Brain 135:3015–3025PubMedCrossRefGoogle Scholar
  21. Hunter R, McLuskie R, Wyper D et al (1989) The pattern of function-related regional cerebral blood flow investigated by single photon emission tomography with 99mTc-HMPAO in patients with presenile Alzheimer’s disease and Korsakoff’s psychosis. Psychol Med 19:847–855PubMedCrossRefGoogle Scholar
  22. Jacobson RR, Lishman WA (1990) Cortical and diencephalic lesions in Korsakoff’s syndrome: a clinical and CT scan study. Psychol Med 20:63–75PubMedCrossRefGoogle Scholar
  23. James C, Morand S, Barcellona-Lehmann S, Schnider A (2009) Neural transition from short to long term memory: an ERP study. Hippocampus 19:371–378PubMedCrossRefGoogle Scholar
  24. Jernigan TL, Schafer K, Butters N, Cermak LS (1991) Magnetic resonance imaging of alcoholic Korsakoff patients. Neuropsychopharmacology 4:175–186PubMedGoogle Scholar
  25. Jones DK, Catani M, Pierpaoli C et al (2005) A diffusion tensor magnetic resonance imaging study of frontal cortex connections in very-late-onset schizophrenia-like psychosis. Am J Geriatr Psychiatry 13:1092–1099PubMedCrossRefGoogle Scholar
  26. Kessels RPC, Kopelman MD (2012) Context memory in Korsakoff’s syndrome. Neuropsychol Rev 22:117–131. doi:10.1007/s11065-012-9202-5 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kim M, Kim J, Kwon JS (2001) The effect of immediate and delayed word repetition on event-related potential in a continuous recognition task. Brain Res Cogn Brain Res 11:387–396PubMedCrossRefGoogle Scholar
  28. Kopelman MD (1995) The Korsakoff syndrome. Br J Psychiatry 166:154–173PubMedCrossRefGoogle Scholar
  29. Kopelman MD, Wilson BA, Baddeley AD (1989) The autobiographical memory interview: a new assessment of autobiographical and personal semantic memory in amnesic patients. J Clin Exp Neuropsychol 11:724–744PubMedCrossRefGoogle Scholar
  30. Lechevalier B, Aupee AM, de la Sayette V et al (2000) Function imaging of the hippocampus in Korsakoff’s syndrome. Bull Acad Natl Med 184:1491–1497PubMedGoogle Scholar
  31. Mair WG, Warrington EK, Weiskrantz L (1979) Memory disorder in Korsakoff’s psychosis: a neuropathological and neuropsychological investigation of two cases. Brain 102:749–783PubMedCrossRefGoogle Scholar
  32. Matsuda K, Yamaji S, Ishii K et al (1997) Regional cerebral blood flow and oxygen metabolism in a patient with Korsakoff syndrome. Ann Nucl Med 11:33–35PubMedCrossRefGoogle Scholar
  33. Mayes AR, Meudell PR, Mann D, Pickering A (1988) Location of lesions in Korsakoff’s syndrome: neuropsychological and neuropathological data on two patients. Cortex 24:367–388PubMedCrossRefGoogle Scholar
  34. Metzler-Baddeley C, Hunt S, Jones DK et al (2012) Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment. Neurology 79:2233–2240PubMedCentralPubMedCrossRefGoogle Scholar
  35. Moudgil SS, Azzouz M, Al-Azzaz A et al (2000) Amnesia due to fornix infarction. Stroke 31:1418–1419PubMedCrossRefGoogle Scholar
  36. Nahum L, Gabriel D, Spinelli L et al (2011) Rapid consolidation and the human hippocampus: intracranial recordings confirm surface EEG. Hippocampus 21:689–693. doi:10.1002/hipo.20819 PubMedCrossRefGoogle Scholar
  37. Paller KA, Acharya A, Richardson BC et al (1997) Functional neuroimaging of cortical dysfunction in alcoholic Korsakoff’s syndrome. J Cogn Neurosci 9:277–293. doi:10.1162/jocn.1997.9.2.277 PubMedCrossRefGoogle Scholar
  38. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiat 38:725–743CrossRefGoogle Scholar
  39. Perrin F, Pernier J, Bertrand O et al (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81PubMedCrossRefGoogle Scholar
  40. Rahme R, Moussa R, Awada A et al (2007) Acute Korsakoff-like amnestic syndrome resulting from left thalamic infarction following a right hippocampal hemorrhage. Am J Neuroradiol 28:759–760PubMedGoogle Scholar
  41. Reed LJ, Lasserson D, Marsden P et al (2003) FDG-PET findings in the Wernicke–Korsakoff syndrome. Cortex 39:1027–1045. doi:10.1016/s0010-9452(08)70876-1 PubMedCrossRefGoogle Scholar
  42. Regard M, Strauss E, Knapp P (1982) Children’s production on verbal and non-verbal fluency tasks. Percept Mot Skills 55:839–844Google Scholar
  43. Renou P, Ducreux D, Batouche F, Denier C (2008) Pure and acute Korsakoff syndrome due to a bilateral anterior fornix infarction: a diffusion tensor tractography study. Arch Neurol 65:1252–1253PubMedCrossRefGoogle Scholar
  44. Rossell SL, Price CJ, Nobre AC (2003) The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia 41:550–564PubMedCrossRefGoogle Scholar
  45. Schnider A (2008) The confabulating mind. How the brain creates reality. Oxford University Press, OxfordCrossRefGoogle Scholar
  46. Schnider A, Nahum L, Pignat JM et al (2013) Isolated prospective confabulation in Wernicke–Korsakoff syndrome: a case for reality filtering. Neurocase 19:90–104PubMedCrossRefGoogle Scholar
  47. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98. doi:10.1016/j.neuroimage.2008.03.061 PubMedCrossRefGoogle Scholar
  48. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219PubMedCrossRefGoogle Scholar
  49. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505PubMedCrossRefGoogle Scholar
  50. Smith SM, Johansen-Berg H, Jenkinson M et al (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2:499–503. doi:10.1038/nprot.2007.45 PubMedCrossRefGoogle Scholar
  51. Snodgrass JG, Vanderwart M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn Mem 6:174–215CrossRefGoogle Scholar
  52. Squire LR, Amaral DG, Press GA (1990) Magnetic resonance imaging of the hippocampal formation and mammillary nuclei distinguish medial temporal and diencephalic amnesia. J Neurosci 10:3106–3117PubMedGoogle Scholar
  53. Sullivan EV, Marsh L (2003) Hippocampal volume deficits in alcoholic Korsakoff’s syndrome. Neurology 61:1716–1719PubMedCrossRefGoogle Scholar
  54. Sullivan EV, Pfefferbaum A (2009) Neuroimaging of the Wernicke–Korsakoff syndrome. Alcohol Alcohol 44:155–165. doi:10.1093/alcalc/agn103 CrossRefGoogle Scholar
  55. Thurstone LL, Thurstone TG (1962) Primary mental abilities (Rev.). Science Research Associates, ChicagoGoogle Scholar
  56. Victor M, Adams RD, Collins GH (1989) The Wernicke-Korsakoff syndrome, 2nd edn. F.A Davis, PhiladelphiaGoogle Scholar
  57. Visser PJ, Krabbendam L, Verhey FRJ et al (1999) Brain correlates of memory dysfunction in alcoholic Korsakoff’s syndrome. J Neurol Neurosurg Psychiatry 67:774–778. doi:10.1136/jnnp.67.6.774 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Warrington EK, Weiskrantz L (1982) Amnesia: a disconnection syndrome? Neuropsychologia 20:233–248PubMedCrossRefGoogle Scholar
  59. Wechsler D (1945) A standardized memory scale for clinical use. J Psychol 19:87–95Google Scholar
  60. Welsh KA, Butters N, Mohs RC et al (1994) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 44:609–614PubMedCrossRefGoogle Scholar
  61. Wijnia JW, Goossensen A (2010) Cerebellar neurocognition and Korsakoff’s syndrome: an hypothesis. Med Hypotheses 75:266–268. doi:10.1016/j.mehy.2010.02.035 PubMedCrossRefGoogle Scholar
  62. Yoneoka Y, Takeda N, Inoue A et al (2004) Acute Korsakoff syndrome following mammillothalamic tract infarction.  Am J Neuroradiol 25:964–968PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Louis Nahum
    • 1
    • 2
  • Jean-Michel Pignat
    • 1
    • 3
  • Aurélie Bouzerda-Wahlen
    • 1
  • Damien Gabriel
    • 1
  • Maria Chiara Liverani
    • 1
  • François Lazeyras
    • 3
  • Radek Ptak
    • 1
    • 2
  • Jonas Richiardi
    • 3
    • 4
  • Sven Haller
    • 3
  • Gabriel Thorens
    • 5
  • Daniele F. Zullino
    • 5
  • Adrian G. Guggisberg
    • 1
    • 2
  • Armin Schnider
    • 1
    • 2
  1. 1.Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences and Dermatology, Medical FacultyUniversity Hospitals of GenevaGenevaSwitzerland
  2. 2.Division of Neurorehabilitation, Department of Clinical NeurosciencesUniversity Hospitals of GenevaGenevaSwitzerland
  3. 3.Division of Radiology, Department of Neuroscience and Department of NeurologyUniversity Hospitals of GenevaGenevaSwitzerland
  4. 4.Department of Neurology and Neurological SciencesStanford University School of MedicineStandfordUSA
  5. 5.Division of Addictology, Department of PsychiatryUniversity Hopsitals of GenevaGenevaSwitzerland

Personalised recommendations