Brain Topography

, Volume 28, Issue 1, pp 127–134 | Cite as

Frontal Midline Theta Reflects Individual Task Performance in a Working Memory Task

  • Urs Maurer
  • Silvia Brem
  • Martina Liechti
  • Stefano Maurizio
  • Lars Michels
  • Daniel Brandeis
Original Paper

Abstract

Frontal midline (fm-)theta activity has been related to working memory (WM) processes, as it typically increases with WM load. The robustness of this effect, however, varies across studies and subjects, putting limits to its interpretation. We hypothesized that variation in the fm-theta effect may reflect individual differences in task difficulty with increasing WM load as indicated by behavioural responses. We further tested whether effects in the alpha range are robust markers of WM load. We recorded 64-channel EEG from 24 healthy adults while they memorized either 2 or 4 unfamiliar symbols (low vs. high WM load) in a modified Sternberg task. The last 2 s of the retention phase were analyzed for WM load-related changes in the theta (5–7 Hz) and alpha range (lower: 8–10 Hz, upper: 10.5–12.5 Hz). Higher WM load led to less accurate and slower responses. The increase of fm-theta with WM load was most pronounced at fm electrodes, localized to anterior cingulate regions, and correlated with the participants’ decrease in accuracy due to higher WM load. Alpha peak frequency increased in the high compared to the low WM load condition, corresponding to a decrease in lower alpha range across all channels. The results demonstrate that previously reported variation in fm-theta workload effects can partly be explained by variation in task difficulty indexed by individual task accuracy. Moreover, the results also demonstrate that alpha WM load effects are prominent when separating upper and lower alpha.

Keywords

Working memory EEG Frequency Theta Alpha Individual differences 

Supplementary material

10548_2014_361_MOESM1_ESM.pdf (594 kb)
Supplementary material 1 (PDF 594 kb)

References

  1. Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4(10):829–839PubMedCrossRefGoogle Scholar
  2. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66(6):921–936PubMedCrossRefGoogle Scholar
  3. Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21(3):475–485PubMedCrossRefGoogle Scholar
  4. Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81(6):1641–1660PubMedCentralPubMedCrossRefGoogle Scholar
  5. Boonstra TW, Powell TY, Mehrkanoon S, Breakspear M (2013) Effects of mnemonic load on cortical activity during visual working memory: linking ongoing brain activity with evoked responses. Int J Psychophysiol 89(3):409–418PubMedCrossRefGoogle Scholar
  6. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5(1):49–62PubMedCrossRefGoogle Scholar
  7. Cavanagh JF, Eisenberg I, Guitart-Masip M, Huys Q, Frank MJ (2013) Frontal theta overrides pavlovian learning biases. J Neurosci 33(19):8541–8548PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625):604–608PubMedCrossRefGoogle Scholar
  9. Doppelmayr M, Klimesch W, Sauseng P, Hodlmoser K, Stadler W, Hanslmayr S (2005) Intelligence related differences in EEG-bandpower. Neurosci Lett 381(3):309–313PubMedCrossRefGoogle Scholar
  10. Doppelmayr M, Finkenzeller T, Sauseng P (2008) Frontal midline theta in the pre-shot phase of rifle shooting: differences between experts and novices. Neuropsychologia 46(5):1463–1467PubMedCrossRefGoogle Scholar
  11. Dumontheil I, Roggeman C, Ziermans T, Peyrard-Janvid M, Matsson H, Kere J, Klingberg T (2011) Influence of the COMT genotype on working memory and brain activity changes during development. Biol Psychiatry 70(3):222–229PubMedCrossRefGoogle Scholar
  12. Gasser T, Bacher P, Mocks J (1982) Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 53(1):119–124PubMedCrossRefGoogle Scholar
  13. Gevins A, Smith ME (2000) Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 10(9):829–839PubMedCrossRefGoogle Scholar
  14. Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7(4):374–385PubMedCrossRefGoogle Scholar
  15. Ishihara T, Yoshi N (1972) Multivariate analytic study of EEG and mental activity in juvenile delinquents. Electroencephalogr Clin Neurophysiol 33(1):71–80PubMedCrossRefGoogle Scholar
  16. Ishii R, Shinosaki K, Ukai S, Inouye T, Ishihara T, Yoshimine T, Hirabuki N, Asada H, Kihara T, Robinson SE, Takeda M (1999) Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport 10(4):675–679PubMedCrossRefGoogle Scholar
  17. Itthipuripat S, Wessel JR, Aron AR (2013) Frontal theta is a signature of successful working memory manipulation. Exp Brain Res 224(2):255–262PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15(8):1395–1399PubMedCrossRefGoogle Scholar
  19. Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882PubMedCrossRefGoogle Scholar
  20. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111(10):1745–1758PubMedCrossRefGoogle Scholar
  21. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195PubMedCrossRefGoogle Scholar
  22. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88PubMedCrossRefGoogle Scholar
  23. Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14(7):317–324PubMedCrossRefGoogle Scholar
  24. Langer N, von Bastian CC, Wirz H, Oberauer K, Jancke L (2013) The effects of working memory training on functional brain network efficiency. Cortex 49(9):2424–2438PubMedCrossRefGoogle Scholar
  25. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48(6):609–621PubMedCrossRefGoogle Scholar
  26. Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ (2013) Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 75(5):361–370PubMedCrossRefGoogle Scholar
  27. Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115(8):1821–1835PubMedCrossRefGoogle Scholar
  28. Maurer U, Brem S, Bucher K, Kranz F, Benz R, Steinhausen H-C, Brandeis D (2007) Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain 130:3200–3210PubMedCrossRefGoogle Scholar
  29. Meltzer JA, Negishi M, Mayes LC, Constable RT (2007) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118(11):2419–2436PubMedCentralPubMedCrossRefGoogle Scholar
  30. Meltzer JA, Zaveri HP, Goncharova II, Distasio MM, Papademetris X, Spencer SS, Spencer DD, Constable RT (2008) Effects of working memory load on oscillatory power in human intracranial EEG. Cereb Cortex 18(8):1843–1855PubMedCentralPubMedCrossRefGoogle Scholar
  31. Michel CM, König T, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroimaging. Cambridge University Press, New YorkCrossRefGoogle Scholar
  32. Michels L, Moazami-Goudarzi M, Jeanmonod D, Sarnthein J (2008) EEG alpha distinguishes between cuneal and precuneal activation in working memory. Neuroimage 40(3):1296–1310PubMedCrossRefGoogle Scholar
  33. Michels L, Bucher K, Luchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One 5(4):e10298PubMedCentralPubMedCrossRefGoogle Scholar
  34. Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27(2):341–356PubMedCrossRefGoogle Scholar
  35. Park JY, Min BK, Jung YC, Pak H, Jeong YH, Kim E (2013) Illumination influences working memory: an EEG study. Neuroscience 247:386–394PubMedCrossRefGoogle Scholar
  36. Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90(3):169–179PubMedCrossRefGoogle Scholar
  37. Payne L, Kounios J (2009) Coherent oscillatory networks supporting short-term memory retention. Brain Res 1247:126–132PubMedCentralPubMedCrossRefGoogle Scholar
  38. Pfurtscheller G, Stancak A Jr, Neuper C (1996) Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24(1–2):39–46PubMedCrossRefGoogle Scholar
  39. Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21(9):3175–3183PubMedGoogle Scholar
  40. Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield EB, Kahana MJ (2006) Theta oscillations in human cortex during a working-memory task: evidence for local generators. J Neurophysiol 95(3):1630–1638PubMedCrossRefGoogle Scholar
  41. Rhodes SM, Park J, Seth S, Coghill DR (2012) A comprehensive investigation of memory impairment in attention deficit hyperactivity disorder and oppositional defiant disorder. J Child Psychol Psychiatry 53(2):128–137PubMedCrossRefGoogle Scholar
  42. Sander MC, Lindenberger U, Werkle-Bergner M (2012) Lifespan age differences in working memory: a two-component framework. Neurosci Biobehav Rev 36(9):2007–2033PubMedCrossRefGoogle Scholar
  43. Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022PubMedCrossRefGoogle Scholar
  44. Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44(3):1224–1238PubMedCrossRefGoogle Scholar
  45. Schulz E, Maurer U, van der Mark S, Bucher K, Brem S, Martin E, Brandeis D (2008) Impaired semantic processing during sentence reading in children with dyslexia: combined fMRI and ERP evidence. Neuroimage 41(1):153–168PubMedCrossRefGoogle Scholar
  46. Sonuga-Barke EJ, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, Stevenson J, Danckaerts M, van der Oord S, Dopfner M, Dittmann RW, Simonoff E, Zuddas A, Banaschewski T, Buitelaar J, Coghill D, Hollis C, Konofal E, Lecendreux M, Wong IC, Sergeant J (2013) Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am J Psychiatry 170(3):275–289PubMedCrossRefGoogle Scholar
  47. Sternberg S (1966) High-speed scanning in human memory. Science 153(736):652–654PubMedCrossRefGoogle Scholar
  48. Surwillo W (1961) Frequency of the alpha rhythm, reaction time and age. Nature 191:823–824CrossRefGoogle Scholar
  49. van Ewijk H, Heslenfeld DJ, Luman M, Rommelse NN, Hartman CA, Hoekstra P, Franke B, Buitelaar JK, Oosterlaan J (2013) Visuospatial working memory in ADHD patients, unaffected siblings, and healthy controls. J Atten Disord [Epub ahead of printing]Google Scholar
  50. Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57(11):1336–1346PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Urs Maurer
    • 1
    • 2
  • Silvia Brem
    • 2
    • 3
  • Martina Liechti
    • 3
  • Stefano Maurizio
    • 3
  • Lars Michels
    • 4
  • Daniel Brandeis
    • 2
    • 3
    • 5
    • 6
  1. 1.Department of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
  3. 3.Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
  4. 4.Institute of NeuroradiologyUniversity Hospital ZurichZurichSwitzerland
  5. 5.Zurich Center for Integrative Human Physiology (ZIHP)ZurichSwitzerland
  6. 6.Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthMedical Faculty Mannheim/Heidelberg UniversityMannheimGermany

Personalised recommendations