Brain Topography

, Volume 27, Issue 3, pp 329–337 | Cite as

Multivariate Pattern Recognition for Diagnosis and Prognosis in Clinical Neuroimaging: State of the Art, Current Challenges and Future Trends

  • Sven HallerEmail author
  • Karl-Olof Lovblad
  • Panteleimon Giannakopoulos
  • Dimitri Van De Ville


Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.


MRI Pattern recognition Support vector machines SVM Multivariate Predictive modeling 



Alzheimer disease


Alzheimer disease neuroimaging initiative


Diffusion tensor imaging


Functional magnetic resonance imaging


Mild cognitive impairment


Magnetic resonance imaging


Support vector machines


Voxel based morphometry



This work was supported in parts by the Swiss National Science Foundation (SNF) grants 320030_147126/1 and PP00P2-146318

Conflict of interest

No conflicts of interest.


  1. Abdulkadir A, Mortamet B, Vemuri P, Jack CRJ, Krueger G, Kloppel S (2011) Effects of hardware heterogeneity on the performance of SVM Alzheimer’s disease classifier. Neuroimage 58:785–792PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bullmore E (2012) The future of functional MRI in clinical medicine. Neuroimage 62:1267–1271PubMedCrossRefGoogle Scholar
  3. Costafreda SG, Chu C, Ashburner J, Fu CH (2009) Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 4:e6353PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cox DD, Savoy RL (2003) Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19:261–270PubMedCrossRefGoogle Scholar
  5. Craddock RC, Holtzheimer PE, Hu XP, Mayberg HS (2009) Disease state prediction from resting state functional connectivity. Magn Reson Med 62:1619–1628PubMedCentralPubMedCrossRefGoogle Scholar
  6. Criminisi A, Shotton J (2013) Decision forests for computer vision and medical image analysis. Retrieved from
  7. Cui Y, Liu B, Luo S, Zhen X, Fan M, Liu T, Zhu W, Park M, Jiang T, Jin JS (2011) Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLoS ONE 6:e21896PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cui Y, Sachdev PS, Lipnicki DM, Jin JS, Luo S, Zhu W, Kochan NA, Reppermund S, Liu T, Trollor JN, Brodaty H, Wen W (2012) Predicting the development of mild cognitive impairment: a new use of pattern recognition. Neuroimage 60:894–901PubMedCrossRefGoogle Scholar
  9. Damoiseaux JS, Prater KE, Miller BL, Greicius MD (2012) Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging 33:828.e19–828.e30CrossRefGoogle Scholar
  10. Davatzikos C, Shen D, Gur RC, Wu X, Liu D, Fan Y, Hughett P, Turetsky BI, Gur RE (2005) Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry 62:1218–1227PubMedCrossRefGoogle Scholar
  11. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41:1220–1227PubMedCentralPubMedCrossRefGoogle Scholar
  12. Demirci O, Clark VP, Magnotta VA, Andreasen NC, Lauriello J, Kiehl KA, Pearlson GD, Calhoun VD (2008) A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from multi-site fMRI schizophrenia study. Brain Imaging Behav 2:147–226PubMedCentralPubMedCrossRefGoogle Scholar
  13. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JRJ, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ethofer T, Van De Ville D, Scherer K, Vuilleumier P (2009) Decoding of emotional information in voice-sensitive cortices. Curr Biol 19:1028–1033PubMedCrossRefGoogle Scholar
  15. Fan Y, Batmanghelich N, Clark CM, Davatzikos C (2008a) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39:1731–1743PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fan Y, Gur RE, Gur RC, Wu X, Shen D, Calkins ME, Davatzikos C (2008b) Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study. Biol Psychiatry 63:118–124PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fan Y, Resnick SM, Wu X, Davatzikos C (2008c) Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41:277–285PubMedCentralPubMedCrossRefGoogle Scholar
  18. Forlenza OV, Diniz BS, Nunes PV, Memoria CM, Yassuda MS, Gattaz WF (2009) Diagnostic transitions in mild cognitive impairment subtypes. Int Psychogeriatr 21:1088–1095PubMedCrossRefGoogle Scholar
  19. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedCentralPubMedGoogle Scholar
  20. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36PubMedCrossRefGoogle Scholar
  21. Gothelf D, Hoeft F, Ueno T, Sugiura L, Lee AD, Thompson P, Reiss AL (2011) Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome. J Psychiatr Res 45:322–331PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hackmack K, Paul F, Weygandt M, Allefeld C, Haynes JD (2012a) Multi-scale classification of disease using structural MRI and wavelet transform. Neuroimage 62:48–58PubMedCrossRefGoogle Scholar
  23. Hackmack K, Weygandt M, Wuerfel J, Pfueller CF, Bellmann-Strobl J, Paul F, Haynes JD (2012b) Can we overcome the ‘clinico-radiological paradox’ in multiple sclerosis? J Neurol 259:2151–2160PubMedCrossRefGoogle Scholar
  24. Haller S, Borgwardt SJ, Schindler C, Aston J, Radue EW, Riecher-Rossler A (2009) Can cortical thickness asymmetry analysis contribute to detection of at-risk mental state and first-episode psychosis? A pilot study. Radiology 250:212–221PubMedCrossRefGoogle Scholar
  25. Haller S, Bartsch A, Nguyen D, Rodriguez C, Emch J, Gold G, Lovblad KO, Giannakopoulos P (2010a) Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology 257:764–773PubMedCrossRefGoogle Scholar
  26. Haller S, Nguyen D, Rodriguez C, Emch J, Gold G, Bartsch A, Lovblad KO, Giannakopoulos P (2010b) Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J Alzheimers Dis 22:315–327PubMedGoogle Scholar
  27. Haller S, Lovblad KO, Giannakopoulos P (2011) Principles of classification analyses in mild cognitive impairment (MCI) and alzheimer disease. J Alzheimers Dis 26(Suppl 3):389–394PubMedGoogle Scholar
  28. Haller S, Badoud S, Nguyen D, Garibotto V, Lovblad KO, Burkhard PR (2012) Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol 33:2123–2128PubMedCrossRefGoogle Scholar
  29. Haller S, Badoud S, Nguyen D, Barnaure I, Montandon ML, Lovblad KO, Burkhard PR (2013a) Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol 23:12–19PubMedCrossRefGoogle Scholar
  30. Haller S, Missonnier P, Herrmann FR, Rodriguez C, Deiber MP, Nguyen D, Gold G, Lovblad KO, Giannakopoulos P (2013b) Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI. AJNR Am J Neuroradiol 34:283–291PubMedCrossRefGoogle Scholar
  31. Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142PubMedCrossRefGoogle Scholar
  32. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430PubMedCrossRefGoogle Scholar
  33. Hoeft F, Lightbody AA, Hazlett HC, Patnaik S, Piven J, Reiss AL (2008) Morphometric spatial patterns differentiating boys with fragile X syndrome, typically developing boys, and developmentally delayed boys aged 1 to 3 years. Arch Gen Psychiatry 65:1087–1097PubMedCentralPubMedCrossRefGoogle Scholar
  34. Horikawa T, Tamaki M, Miyawaki Y, Kamitani Y (2013) Neural decoding of visual imagery during sleep. Science 340:639–642PubMedCrossRefGoogle Scholar
  35. Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CRJ, Ashburner J, Frackowiak RS (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci USA 103:3863–3868PubMedCentralPubMedCrossRefGoogle Scholar
  37. Krishnan A, Williams LJ, McIntosh AR, Abdi H (2011) Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56:455–475PubMedCrossRefGoogle Scholar
  38. Kruggel F, Turner J, Muftuler LT (2010) Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. Neuroimage 49:2123–2133PubMedCentralPubMedCrossRefGoogle Scholar
  39. Langs G, Menze BH, Lashkari D, Golland P (2011) Detecting stable distributed patterns of brain activation using Gini contrast. Neuroimage 56:497–507PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lemm S, Blankertz B, Dickhaus T, Muller KR (2011) Introduction to machine learning for brain imaging. Neuroimage 56:387–399PubMedCrossRefGoogle Scholar
  41. Mariani E, Monastero R, Mecocci P (2007) Mild cognitive impairment: a systematic review. J Alzheimers Dis 12:23–35PubMedGoogle Scholar
  42. Marquand A, Howard M, Brammer M, Chu C, Coen S, Mourao-Miranda J (2010) Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. Neuroimage 49:2178–2189PubMedCrossRefGoogle Scholar
  43. Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc 72:417–473CrossRefGoogle Scholar
  44. Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44:1415–1422PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL, Mason RA, Just MA (2008) Predicting human brain activity associated with the meanings of nouns. Science 320:1191–1195PubMedCrossRefGoogle Scholar
  46. Mourao-Miranda J, Reinders AA, Rocha-Rego V, Lappin J, Rondina J, Morgan C, Morgan KD, Fearon P, Jones PB, Doody GA, Murray RM, Kapur S, Dazzan P (2012) Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol Med 42:1037–1047PubMedCentralPubMedCrossRefGoogle Scholar
  47. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66PubMedCentralPubMedCrossRefGoogle Scholar
  48. Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL (2011) Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 21:1641–1646PubMedCentralPubMedCrossRefGoogle Scholar
  49. O’Dwyer L, Lamberton F, Bokde AL, Ewers M, Faluyi YO, Tanner C, Mazoyer B, O’Neill D, Bartley M, Collins DR, Coughlan T, Prvulovic D, Hampel H (2012) Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS ONE 7:e32441PubMedCentralPubMedCrossRefGoogle Scholar
  50. Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36:1140–1152PubMedCrossRefGoogle Scholar
  51. Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45:S199–S209PubMedCentralPubMedCrossRefGoogle Scholar
  52. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194PubMedCrossRefGoogle Scholar
  53. Petersen RC, Negash S (2008) Mild cognitive impairment: an overview. CNS Spectr 13:45–53PubMedGoogle Scholar
  54. Pettersson-Yeo W, Benetti S, Marquand AF, Dell’acqua F, Williams SC, Allen P, Prata D, McGuire P, Mechelli A (2013) Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol Med 43:2547–2562PubMedCentralPubMedCrossRefGoogle Scholar
  55. Plant C, Teipel SJ, Oswald A, Bohm C, Meindl T, Mourao-Miranda J, Bokde AW, Hampel H, Ewers M (2010) Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage 50:162–174PubMedCentralPubMedCrossRefGoogle Scholar
  56. Raizada RDS, Kriegeskorte N (2010) Pattern-information fMRI: new questions which it opens up and challenges which face it. Int J Imaging Syst Technol 1–19. Retrieved from
  57. Richiardi J, Gschwind M, Simioni S, Annoni JM, Greco B, Hagmann P, Schluep M, Vuilleumier P, Van De Ville D (2012) Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage 62:2021–2033PubMedCrossRefGoogle Scholar
  58. Samek W, Meinecke FC, Muller KR (2013) Transferring subspaces between subjects in brain-computer interfacing. IEEE Trans Biomed Eng 60(8):2289–2298Google Scholar
  59. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedCentralPubMedCrossRefGoogle Scholar
  60. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Retrieved from
  61. Sun D, van Erp TG, Thompson PM, Bearden CE, Daley M, Kushan L, Hardt ME, Nuechterlein KH, Toga AW, Cannon TD (2009) Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Biol Psychiatry 66:1055–1060PubMedCentralPubMedCrossRefGoogle Scholar
  62. Tolosi L, Lengauer T (2011) Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 27:1986–1994PubMedCrossRefGoogle Scholar
  63. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356PubMedCrossRefGoogle Scholar
  64. Van De Ville D, Blu T, Unser M (2006) Surfing the brain. IEEE Eng Med Biol Mag 25:65–78CrossRefGoogle Scholar
  65. Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z (2006) Discriminative analysis of early Alzheimer’s disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Comput Assist Interv 9:340–347PubMedGoogle Scholar
  66. Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59:2045–2056PubMedCentralPubMedCrossRefGoogle Scholar
  67. Weygandt M, Hackmack K, Pfuller C, Bellmann-Strobl J, Paul F, Zipp F, Haynes JD (2011) MRI pattern recognition in multiple sclerosis normal-appearing brain areas. PLoS ONE 6:e21138PubMedCentralPubMedCrossRefGoogle Scholar
  68. Zhang D, Shen D (2012a) Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE 7:e33182PubMedCentralPubMedCrossRefGoogle Scholar
  69. Zhang D, Shen D (2012b) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59:895–907PubMedCentralPubMedCrossRefGoogle Scholar
  70. Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sven Haller
    • 1
    Email author
  • Karl-Olof Lovblad
    • 1
  • Panteleimon Giannakopoulos
    • 2
  • Dimitri Van De Ville
    • 3
    • 4
  1. 1.Department of Imaging and Medical InformaticsUniversity Hospitals of Geneva and Faculty of Medicine of the University of GenevaGenevaSwitzerland
  2. 2.Department of Mental Health and PsychiatryUniversity Hospitals of Geneva and Faculty of Medicine of the University of GenevaGenevaSwitzerland
  3. 3.Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
  4. 4.Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations