Brain Topography

, Volume 28, Issue 5, pp 702–709 | Cite as

Cortical Thickness Changes Associated with Photoparoxysmal Response

  • Alexandru Hanganu
  • Stanislav A. Groppa
  • Günther Deuschl
  • Hartwig Siebner
  • Friederike Moeller
  • Michael Siniatchkin
  • Ulrich Stephani
  • Sergiu Groppa
Original Paper

Abstract

Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal cortices. The aim of the present study was to determine structural changes associated with PPR. For this purpose we analysed the cortical thickness as derived from T1 MRI images in PPR-positive-subjects (n = 12; 15.5 ± 8.6 years; 4 males), PPR-positive-IGE-patients (n = 12; 14.9 ± 2.7 years; 4 males) and compared these groups with a group of PPR-negative-healthy-controls (HC, n = 17; 15.3 ± 3.6 years; 6 males). Our results revealed an increase of cortical thickness in the occipital, frontal and parietal cortices bilaterally in PPR-positive-subjects in comparison to HC. Moreover PPR-positive-subjects presented a significant decrease of cortical thickness in the temporal cortex in the same group contrast. IGE patients exhibited lower cortical thickness in the temporal lobe bilaterally and in the right paracentral region in comparison to PPR-positive-subjects. Our study demonstrates structural changes in the occipital lobe, frontoparietal regions and temporal lobe, which also show functional changes associated with PPR. Patients with epilepsy present changes in the temporal lobe and supplementary motor area.

Keywords

Photosensitivity Photoparoxysmal response Cortical thickness Idiopathic generalized epilepsy 

References

  1. Annas GJ (1998) Human rights and health—the universal declaration of human rights. N Engl J Med 339(24):1778–1781. doi:10.1056/NEJM199812103392411 PubMedCrossRefGoogle Scholar
  2. Binnie CD, Findlay J, Wilkins AJ (1985) Mechanisms of epileptogenesis in photosensitive epilepsy implied by the effects of moving patterns. Electroencephalogr Clin Neurophysiol 61(1):1–6. doi:10.1016/0013-4694(85)91065-X PubMedCrossRefGoogle Scholar
  3. Bramen JE, Hranilovich JA, Dahl RE, Forbes EE, Chen J, Toga AW, Dinov ID, Worthman CM, Sowell ER (2011) Puberty influences medial temporal lobe and cortical gray matter maturation differently in boys than girls matched for sexual maturity. Cereb Cortex 21(3):636–646. doi:10.1093/cercor/bhq137 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chiappa KH, Hill RA, Huang-Hellinger F, Jenkins BG (1999) Photosensitive epilepsy studied by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia 40:3–7. doi:10.1111/j.1528-1157.1999.tb00899.x PubMedCrossRefGoogle Scholar
  5. Ciumas C, Savic I (2006) Structural changes in patients with primary generalized tonic and clonic seizures. Neurology 67(4):683–686. doi:10.1212/01.wnl.0000230171.23913.cf PubMedCrossRefGoogle Scholar
  6. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based snalysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194. doi:10.1006/nimg 1998.0395PubMedCrossRefGoogle Scholar
  7. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980. doi:10.1016/j.neuroimage.2006.01.021 PubMedCrossRefGoogle Scholar
  8. Ding SL, Van Hoesen GW, Cassell MD, Poremba A (2009) Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514(6):595–623. doi:10.1002/cne.22053 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW (2007) Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130(4):1159–1166. doi:10.1093/brain/awm016 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97(20):11050–11055. doi:10.1073/pnas.200033797 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based snalysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2):195–207. doi:10.1006/nimg 1998.0396PubMedCrossRefGoogle Scholar
  12. Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A (2005) Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia 46(9):1426–1441. doi:10.1111/j.1528-1167.2005.31405.x PubMedCrossRefGoogle Scholar
  13. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863. doi:10.1038/13158 PubMedCrossRefGoogle Scholar
  14. Groppa S, Siebner HR, Kurth C, Stephani U, Siniatchkin M (2008) Abnormal response of motor cortex to photic stimulation in idiopathic generalized epilepsy. Epilepsia 49(12):2022–2029. doi:10.1111/j.1528-1167.2008.01709.x PubMedCrossRefGoogle Scholar
  15. Groppa S, Moeller F, Siebner H, Wolff S, Riedel C, Deuschl G, Stephani U, Siniatchkin M (2012) White matter microstructural changes of thalamocortical networks in photosensitivity and idiopathic generalized epilepsy. Epilepsia 53(4):668–676. doi:10.1111/j.1528-1167.2012.03414.x PubMedCrossRefGoogle Scholar
  16. Guerrini R, Genton P (2004) Epileptic syndromes and visually induced seizures. Epilepsia 45:14–18. doi:10.1111/j.0013-9580.2004.451011.x PubMedCrossRefGoogle Scholar
  17. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage 32(1):180–194. doi:10.1016/j.neuroimage.2006.02.051 PubMedCrossRefGoogle Scholar
  18. Harding GFA, Fylan F (1999) Two visual mechanisms of photosensitivity. Epilepsia 40(10):1446–1451. doi:10.1111/j.1528-1157.1999.tb02018.x PubMedCrossRefGoogle Scholar
  19. ILAE (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Comission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 30(4):389–399. doi:10.1111/j.1528-1157.1989.tb05316.x CrossRefGoogle Scholar
  20. Inoue Y, Fukao K, Araki T, Yamamoto S, Kubota H, Watanabe Y (1999) Photosensitive and nonphotosensitive electronic screen game-induced seizures. Epilepsia 40:8–16. doi:10.1111/j.1528-1157.1999.tb00900.x PubMedCrossRefGoogle Scholar
  21. Kasteleijn-Nolst Trenité DGA, Binnie CD, Harding GFA, Wilkins A, Covanis T, Eeg-Olofsson O, Goosens L, Henriksen O, Krämer G, Leyten F, Lopes Da Silva FH, Martins Da Silva A, Naquet R, Pedersen B, Ricci S, Rubboli G, Spekreijse H, Waltz S (1999) Photic stimulation—standardization of screening methods. Clin Neurophysiol 29(4):318–324. doi:10.1016/S0987-7053(99)90045-X CrossRefGoogle Scholar
  22. Kim JH, Lee JK, Koh S-B, Lee S-A, Lee J-M, Kim SI, Kang JK (2007) Regional grey matter abnormalities in juvenile myoclonic epilepsy: a voxel-based morphometry study. NeuroImage 37(4):1132–1137. doi:10.1016/j.neuroimage.2007.06.025 PubMedCrossRefGoogle Scholar
  23. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, McGarvey M, Quinn BT, Dusek JA, Benson H (2005) Meditation experience is associated with increased cortical thickness. NeuroReport 16(17):1893. doi:10.1097/01.wnr.0000186598.66243.19 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lu LH, Leonard CM, Thompson PM, Kan E, Jolley J, Welcome SE, Toga AW, Sowell ER (2007) Normal developmental changes in inferior frontal gray matter are associated with improvement in phonological processing: a longitudinal MRI analysis. Cereb Cortex 17(5):1092–1099. doi:10.1093/cercor/bhl019 PubMedCrossRefGoogle Scholar
  25. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee J-Y, Kim SJ, Kim N, Dunner DL, Renshaw PF (2006) Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord 8(1):65–74. doi:10.1111/j.1399-5618.2006.00284.x PubMedCrossRefGoogle Scholar
  26. Lyoo CH, Ryu YH, Lee MS (2010) Topographical distribution of cerebral cortical thinning in patients with mild Parkinson’s disease without dementia. Mov Disord 25(4):496–499. doi:10.1002/mds.22975 PubMedCrossRefGoogle Scholar
  27. Meierkord H, Wieshmann U, Niehaus L, Lehmann R (1997) Structural consequences of status epilepticus demonstrated with serial magnetic resonance imaging. Acta Neurol Scand 96(3):127–132. doi:10.1111/j.1600-0404.1997.tb00253.x PubMedCrossRefGoogle Scholar
  28. Moeller F, Siebner HR, Ahlgrimm N, Wolff S, Muhle H, Granert O, Boor R, Jansen O, Gotman J, Stephani U, Siniatchkin M (2009a) fMRI activation during spike and wave discharges evoked by photic stimulation. NeuroImage 48(4):682–695. doi:10.1016/j.neuroimage.2009.07.019 PubMedCrossRefGoogle Scholar
  29. Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M (2009b) Mapping brain activity on the verge of a photically induced generalized tonic–clonic seizure. Epilepsia 50(6):1632–1637. doi:10.1111/j.1528-1167.2009.02011.x PubMedCrossRefGoogle Scholar
  30. Moeller F, Muthuraman M, Stephani U, Deuschl G, Raethjen J, Siniatchkin M (2013) Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses. Hum Brain Mapp 34(8):1896–1909. doi:10.1002/hbm.22026 PubMedCrossRefGoogle Scholar
  31. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(4):701–722. doi:10.1093/brain/120.4.701 PubMedCrossRefGoogle Scholar
  32. Parent A, Carpenter MB (1995) Human neuroanatomy. Williams & Wilkins, BaltimoreGoogle Scholar
  33. Parra J, Kalitzin SN, Iriarte J, Blanes W, Velis DN, Lopes da Silva FH (2003) Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception? Brain 126(5):1164–1172. doi:10.1093/brain/awg109 PubMedCrossRefGoogle Scholar
  34. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176. doi:10.1126/science.3291116 PubMedCrossRefGoogle Scholar
  35. Salat DH, Lee SY, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD (2009) Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. NeuroImage 48(1):21–28. doi:10.1016/j.neuroimage.2009.06.074 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594. doi:10.1523/jneurosci.5309-07.2008 PubMedCrossRefGoogle Scholar
  37. Siniatchkin M, Groppa S, Jerosch B, Muhle H, Kurth C, Shepherd AJ, Siebner H, Stephani U (2007) Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern. Brain 130(Pt 1):78–87. doi:10.1093/brain/awl306 PubMedGoogle Scholar
  38. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97. doi:10.1109/42.668698 PubMedCrossRefGoogle Scholar
  39. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315. doi:10.1038/nn1008 PubMedCrossRefGoogle Scholar
  40. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004a) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223–8231. doi:10.1523/jneurosci.1798-04.2004 PubMedCrossRefGoogle Scholar
  41. Sowell ER, Thompson PM, Toga AW (2004b) Mapping changes in the human cortex throughout the span of life. Neuroscientist 10(4):372–392. doi:10.1177/1073858404263960 PubMedCrossRefGoogle Scholar
  42. Tae W, Kim S, Joo E, Han S, Kim I, Kim S, Lee JM, Hong S (2008) Cortical thickness abnormality in juvenile myoclonic epilepsy. J Neurol 255(4):561–566PubMedCrossRefGoogle Scholar
  43. Tauer U, Lorenz S, Lenzen KP, Heils A, Muhle H, Gresch M, Neubauer BA, Waltz S, Rudolf G, Mattheisen M, Strauch K, Nürnberg P, Schmitz B, Stephani U, Sander T (2005) Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy. Ann Neurol 57(6):866–873PubMedCrossRefGoogle Scholar
  44. Varotto G, Visani E, Canafoglia L, Franceschetti S, Avanzini G, Panzica F (2012) Enhanced frontocentral EEG connectivity in photosensitive generalized epilepsies: a partial directed coherence study. Epilepsia 53(2):359–367. doi:10.1111/j.1528-1167.2011.03352.x PubMedCrossRefGoogle Scholar
  45. Visani E, Varotto G, Binelli S, Fratello L, Franceschetti S, Avanzini G, Panzica F (2010) Photosensitive epilepsy: spectral and coherence analyses of EEG using 14 Hz intermittent photic stimulation. Clin Neurophysiol 121(3):318–324. doi:10.1016/j.clinph.2009.12.003 PubMedCrossRefGoogle Scholar
  46. Wadlington WB, Riley HD Jr (1965) Light-induced seizures. J Pediatr 66(2):300–312. doi:10.1016/S0022-3476(65)80187-1 PubMedCrossRefGoogle Scholar
  47. Waltz S, Christen HJ, Doose H (1992) The different patterns of the photoparoxysmal response—a genetic study. Electroencephalogr Clin Neurophysiol 83(2):138–145. doi:10.1016/0013-4694(92)90027-F PubMedCrossRefGoogle Scholar
  48. Wieshmann UC, Woermann FG, Lemieux L, Free SL, Bartlett PA, Smith SJM, Duncan JS, Stevens JM, Shorvon FD (1997) Development of hippocampal atrophy: a serial magnetic resonance imaging study in a patient who developed epilepsy sfter generalized status epilepticus. Epilepsia 38(11):1238–1241. doi:10.1111/j.1528-1157.1997.tb01222.x PubMedCrossRefGoogle Scholar
  49. Wilkins AJ, Darby CE, Binnie CD (1979) Neurophysiological aspects of pattern-sensitive epilepsy. Brain 102(1):1–25. doi:10.1093/brain/102.1.1 PubMedCrossRefGoogle Scholar
  50. Woermann FG, Free SL, Koepp MJ, Ashburner J, Duncan JS (1999) Voxel-by-voxel comparison of automatically segmented cerebral gray matter—a rater-independent comparison of structural MRI in patients with epilepsy. NeuroImage 10(4):373–384. doi:10.1006/nimg 1999.0481PubMedCrossRefGoogle Scholar
  51. Yurgelun-Todd DA, Killgore WDS, Cintron CB (2003) Cognitive correlates of medial temporal lobe development across adolescence: a magnetic resonance imaging study. Percept Mot Skills 96(1):3–17. doi:10.2466/pms.2003.96.1.3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexandru Hanganu
    • 1
    • 2
  • Stanislav A. Groppa
    • 2
  • Günther Deuschl
    • 1
  • Hartwig Siebner
    • 4
    • 5
  • Friederike Moeller
    • 3
  • Michael Siniatchkin
    • 3
  • Ulrich Stephani
    • 3
  • Sergiu Groppa
    • 1
  1. 1.Clinic of Neurology, University Hospital Schleswig-HolsteinUniversity of KielKielGermany
  2. 2.Department of Neurology and Neurosurgery, National Scientifico-Practical Centre of Emergency MedicineMedical and Pharmaceutical University Nicolae TestemiţanuChişinăuMoldova
  3. 3.Clinic of Neuropediatrics, University Hospital Schleswig-HolsteinUniversity of KielKielGermany
  4. 4.Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital of HvidovreHvidovreDenmark
  5. 5.Institute of Neurology, Psychiatry and SensesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations