Advertisement

Brain Topography

, Volume 27, Issue 4, pp 467–479 | Cite as

MMN and Novelty P3 in Coma and Other Altered States of Consciousness: A Review

  • Dominique Morlet
  • Catherine Fischer
Review

Abstract

In recent decades, there has been a growing interest in the assessment of patients in altered states of consciousness. There is a need for accurate and early prediction of awakening and recovery from coma. Neurophysiological assessment of coma was once restricted to brainstem auditory and primary cortex somatosensory evoked potentials elicited in the 30 ms range, which have both shown good predictive value for poor coma outcome only. In this paper, we review how passive auditory oddball paradigms including deviant and novel sounds have proved their efficiency in assessing brain function at a higher level, without requiring the patient’s active involvement, thus providing an enhanced tool for the prediction of coma outcome. The presence of an MMN in response to deviant stimuli highlights preserved automatic sensory memory processes. Recorded during coma, MMN has shown high specificity as a predictor of recovery of consciousness. The presence of a novelty P3 in response to the subject’s own first name presented as a novel (rare) stimulus has shown a good correlation with coma awakening. There is now a growing interest in the search for markers of consciousness, if there are any, in unresponsive patients (chronic vegetative or minimally conscious states). We discuss the different ERP patterns observed in these patients. The presence of novelty P3, including parietal components and possibly followed by a late parietal positivity, raises the possibility that some awareness processes are at work in these unresponsive patients.

Keywords

Auditory ERPs MMN Novelty P3 Coma VS MCS 

Notes

Acknowledgments

This work was conducted in the framework of the LabEx Cortex (“Construction, Function and Cognitive Function and Rehabilitation of the Cortex”, ANR-10-LABX-0042) of Université de Lyon.

References

  1. Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L (2009) Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci USA 106(5):1672–1677. doi: 10.1073/pnas.0809667106 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bernat JL (2002) Questions remaining about the minimally conscious state. Neurology 58(3):337–338PubMedCrossRefGoogle Scholar
  3. Bernat JL (2006) Chronic disorders of consciousness. Lancet 367(9517):1181–1192PubMedCrossRefGoogle Scholar
  4. Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C, Massimini M, Litvak V, Laureys S, Friston K (2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332(6031):858–862. doi: 10.1126/science.1202043 PubMedCrossRefGoogle Scholar
  5. Ceponiene R, Lepisto T, Soininen M, Aronen E, Alku P, Näätänen R (2004) Event-related potentials associated with sound discrimination versus novelty detection in children. Psychophysiology 41(1):130–141. doi: 10.1111/j.1469-8986.2003.00138.x PubMedCrossRefGoogle Scholar
  6. Curran T (2004) Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity. Neuropsychologia 42(8):1088–1106. doi: 10.1016/j.neuropsychologia.2003.12.011 PubMedCrossRefGoogle Scholar
  7. Daltrozzo J, Wioland N, Mutschler V, Kotchoubey B (2007) Predicting coma and other low responsive patients outcome using event-related brain potentials: a meta-analysis. Clin Neurophysiol 118(3):606–614PubMedCrossRefGoogle Scholar
  8. Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7(1):1–26CrossRefGoogle Scholar
  9. Eichenlaub JB, Ruby P, Morlet D (2012) What is the specificity of the response to the own first-name when presented as a novel in a passive oddball paradigm? An ERP study. Brain Res 1447:65–78. doi: 10.1016/j.brainres.2012.01.072 PubMedCrossRefGoogle Scholar
  10. Eichenlaub JB, Bertrand O, Morlet D, Ruby P (2013) Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness. Cereb Cortex. doi: 10.1093/cercor/bhs388 PubMedGoogle Scholar
  11. Falkenstein M, Hohnsbein J, Hoormann J (1994) Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr Clin Neurophysiol 92(2):148–160PubMedCrossRefGoogle Scholar
  12. Fischer C, Luaute J (2005) Evoked potentials for the prediction of vegetative state in the acute stage of coma. Neuropsychol Rehabil 15(3–4):372–380. doi: 10.1080/09602010443000434 PubMedCrossRefGoogle Scholar
  13. Fischer C, Morlet D, Bouchet P, Luaute J, Jourdan C, Salord F (1999) Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol 110(9):1601–1610PubMedCrossRefGoogle Scholar
  14. Fischer C, Luaute J, Adeleine P, Morlet D (2004) Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology 63(4):669–673PubMedCrossRefGoogle Scholar
  15. Fischer C, Luaute J, Nemoz C, Morlet D, Kirkorian G, Mauguiere F (2006) Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Crit Care Med 34(5):1520–1524. doi: 10.1097/01.CCM.0000215823.36344.99 PubMedCrossRefGoogle Scholar
  16. Fischer C, Dailler F, Morlet D (2008) Novelty P3 elicited by the subject’s own name in comatose patients. Clin Neurophysiol 119(10):2224–2230. doi: 10.1016/j.clinph.2008.03.035 PubMedCrossRefGoogle Scholar
  17. Fischer C, Luaute J, Morlet D (2010) Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin Neurophysiol 121(7):1032–1042. doi: 10.1016/j.clinph.2010.02.005 PubMedCrossRefGoogle Scholar
  18. Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25(4):355–373PubMedCrossRefGoogle Scholar
  19. Gaeta H, Friedman D, Hunt G (2003) Stimulus characteristics and task category dissociate the anterior and posterior aspects of the novelty P3. Psychophysiology 40(2):198–208PubMedCrossRefGoogle Scholar
  20. Garcia-Larrea L, Cezanne-Bert G (1998) P3, positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalogr Clin Neurophysiol 108(3):260–273PubMedCrossRefGoogle Scholar
  21. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, Rosenberg JH, Whyte J, Zafonte RD, Zasler ND (2002) The minimally conscious state: definition and diagnostic criteria. Neurology 58(3):349–353PubMedCrossRefGoogle Scholar
  22. Giacino JT, Kalmar K, Whyte J (2004) The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85(12):2020–2029PubMedCrossRefGoogle Scholar
  23. Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Näätänen R (1995) Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis. J Cogn Neurosci 7(2):133–143PubMedCrossRefGoogle Scholar
  24. Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55(4):468–484PubMedCrossRefGoogle Scholar
  25. Guthrie D, Buchwald JS (1991) Significance testing of difference potentials. Psychophysiology 28(2):240–244PubMedCrossRefGoogle Scholar
  26. Harrison AH, Connolly JF (2013) Finding a way in: a review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness. Neurosci Biobehav Rev 37(8):1403–1419. doi: 10.1016/j.neubiorev.2013.05.004 PubMedCrossRefGoogle Scholar
  27. Holeckova I, Fischer C, Giard MH, Delpuech C, Morlet D (2006) Brain responses to a subject’s own name uttered by a familiar voice. Brain Res 1082(1):142–152PubMedCrossRefGoogle Scholar
  28. Holeckova I, Fischer C, Morlet D, Delpuech C, Costes N, Mauguiere F (2008) Subject’s own name as a novel in a MMN design: a combined ERP and PET study. Brain Res 1189:152–165. doi: 10.1016/j.brainres.2007.10.091 PubMedCrossRefGoogle Scholar
  29. Höller Y, Bergmann J, Kronbichler M, Crone JS, Schmid EV, Golaszewski S, Ladurner G (2011) Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness. Clin Neurophysiol 122(9):1744–1754. doi: 10.1016/j.clinph.2011.02.009 PubMedCrossRefGoogle Scholar
  30. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1(7905):480–484PubMedCrossRefGoogle Scholar
  31. Kane NM, Curry SH, Butler SR, Cummins BH (1993) Electrophysiological indicators of awakening from coma. Lancet 341:688PubMedCrossRefGoogle Scholar
  32. Kane NM, Curry SH, Rowlands CA, Manara AR, Lewis T, Moss T, Cummins BH, Butler SR (1996) Event-related potentials: neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 22(1):39–46PubMedCrossRefGoogle Scholar
  33. King JR, Faugeras F, Gramfort A, Schurger A, El Karoui I, Sitt JD, Rohaut B, Wacongne C, Labyt E, Bekinschtein T, Cohen L, Naccache L, Dehaene S (2013) Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness. Neuroimage 83C:726–738. doi: 10.1016/j.neuroimage.2013.07.013 CrossRefGoogle Scholar
  34. Kotchoubey B, Lang S, Herb E, Maurer P, Schmalohr D, Bostanov V, Birbaumer N (2003) Stimulus complexity enhances auditory discrimination in patients with extremely severe brain injuries. Neurosci Lett 352(2):129–132PubMedCrossRefGoogle Scholar
  35. Kotchoubey B, Lang S, Mezger G, Schmalohr D, Schneck M, Semmler A, Bostanov V, Birbaumer N (2005) Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin Neurophysiol 116(10):2441–2453. doi: 10.1016/j.clinph.2005.03.028 PubMedCrossRefGoogle Scholar
  36. Laureys S, Celesia GG, Cohadon F, Lavrijsen J, Leon-Carrion J, Sannita WG, Sazbon L, Schmutzhard E, von Wild KR, Zeman A, Dolce G, European Task Force on Disorders of Consciousness (2010) Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 8:68. doi: 10.1186/1741-7015-8-68 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lee YC, Phan TG, Jolley DJ, Castley HC, Ingram DA, Reutens DC (2010) Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: a meta-analysis. Neurology 74(7):572–580. doi: 10.1212/WNL.0b013e3181cff761 PubMedCrossRefGoogle Scholar
  38. Lefebvre CD, Marchand Y, Eskes GA, Connolly JF (2005) Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clin Neurophysiol 116(7):1665–1680. doi: 10.1016/j.clinph.2005.03.015 PubMedCrossRefGoogle Scholar
  39. Lew HL, Poole JH, Castaneda A, Salerno RM, Gray M (2006) Prognostic value of evoked and event-related potentials in moderate to severe brain injury. J Head Trauma Rehabil 21(4):350–360PubMedCrossRefGoogle Scholar
  40. Luauté J, Fischer C, Adeleine P, Morlet D, Tell L, Boisson D (2005) Late auditory and cognitive evoked potentials can be useful to predict good functional outcome after coma. Arch Phys Med Rehabil 86:917–923PubMedCrossRefGoogle Scholar
  41. Madl C, Kramer L, Yeganehfar W, Eisenhuber E, Kranz A, Ratheiser K, Zauner C, Schneider B, Grimm G (1996) Detection of nontraumatic comatose patients with no benefit of intensive care treatment by recording of sensory evoked potentials. Arch Neurol 53(6):512–516PubMedCrossRefGoogle Scholar
  42. Marmarou A, Lu J, Butcher I, McHugh GS, Murray GD, Steyerberg EW, Mushkudiani NA, Choi S, Maas AI (2007) Prognostic value of the Glasgow coma scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma 24(2):270–280. doi: 10.1089/neu.2006.0029 PubMedCrossRefGoogle Scholar
  43. Morlet D, Fischer C (2001) The mismatch negativity (MMN) recorded in comatose patients actually discloses mismatch processes. EPIC XIII 41(3):199Google Scholar
  44. Mushkudiani NA, Hukkelhoven CW, Hernandez AV, Murray GD, Choi SC, Maas AI, Steyerberg EW (2008) A systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury outcomes. J Clin Epidemiol 61(4):331–343. doi: 10.1016/j.jclinepi.2007.06.011 PubMedCrossRefGoogle Scholar
  45. Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425PubMedCrossRefGoogle Scholar
  46. Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42(4):313–329CrossRefGoogle Scholar
  47. Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN): a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123(3):424–458. doi: 10.1016/j.clinph.2011.09.020 PubMedCrossRefGoogle Scholar
  48. Naccache L, Puybasset L, Gaillard R, Serve E, Willer JC (2005) Auditory mismatch negativity is a good predictor of awakening in comatose patients: a fast and reliable procedure. Clin Neurophysiol 116(4):988–989. doi: 10.1016/j.clinph.2004.10.009 PubMedCrossRefGoogle Scholar
  49. Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12(1):14–19. doi: 10.1006/nimg.2000.0591 PubMedCrossRefGoogle Scholar
  50. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL (2003) Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med 31(3):960–967. doi: 10.1097/01.CCM.0000053643.21751.3B PubMedCrossRefGoogle Scholar
  51. Ruby P, Caclin A, Boulet S, Delpuech C, Morlet D (2008) Odd sound processing in the sleeping brain. J Cogn Neurosci 20(2):296–311. doi: 10.1162/jocn.2008.20023 PubMedCrossRefGoogle Scholar
  52. Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448PubMedCrossRefGoogle Scholar
  53. Signorino M, D’Acunto S, Angeleri F, Pietropaoli P (1995) Eliciting P300 in comatose patients. Lancet 345(8944):255–256PubMedCrossRefGoogle Scholar
  54. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150(3700):1187–1188PubMedCrossRefGoogle Scholar
  55. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2(7872):81–84PubMedCrossRefGoogle Scholar
  56. Tervaniemi M, Lehtokoski A, Sinkkonen J, Virtanen J, Ilmoniemi RJ, Näätänen R (1999) Test-retest reliability of mismatch negativity for duration, frequency and intensity changes. Clin Neurophysiol 110:1388–1393PubMedCrossRefGoogle Scholar
  57. The multi-society task force on PVS (1994a) Medical aspects of the persistent vegetative state (1). N Engl J Med 330(21):1499–1508. doi: 10.1056/NEJM199405263302107
  58. The multi-society task force on PVS (1994b) Medical aspects of the persistent vegetative state (2). N Engl J Med 330(22):1572–1579. doi: 10.1056/NEJM199406023302206
  59. Tzovara A, Rossetti AO, Spierer L, Grivel J, Murray MM, Oddo M, De Lucia M (2013) Progression of auditory discrimination based on neural decoding predicts awakening from coma. Brain 136(1):81–89PubMedCrossRefGoogle Scholar
  60. Wijnen VJ, van Boxtel GJ, Eilander HJ, de Gelder B (2007) Mismatch negativity predicts recovery from the vegetative state. Clin Neurophysiol 118(3):597–605. doi: 10.1016/j.clinph.2006.11.020 PubMedCrossRefGoogle Scholar
  61. Yago E, Escera C, Alho K, Giard MH, Serra-Grabulosa JM (2003) Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential. Brain Res Cogn Brain Res 16(3):383–390PubMedCrossRefGoogle Scholar
  62. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A (1998) Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 352(9143):1808–1812PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog)INSERM U1028, CNRS UMR5292LyonFrance
  2. 2.Université Lyon 1LyonFrance
  3. 3.Functional Neurology and Epileptology Department, Neurological HospitalHospices Civils de LyonLyonFrance

Personalised recommendations