Brain Topography

, Volume 27, Issue 4, pp 539–552 | Cite as

An Integrative Model of Subcortical Auditory Plasticity

Review

Abstract

In direct conflict with the concept of auditory brainstem nuclei as passive relay stations for behaviorally-relevant signals, recent studies have demonstrated plasticity of the auditory signal in the brainstem. In this paper we provide an overview of the forms of plasticity evidenced in subcortical auditory regions. We posit an integrative model of auditory plasticity, which argues for a continuous, online modulation of bottom-up signals via corticofugal pathways, based on an algorithm that anticipates and updates incoming stimulus regularities. We discuss the negative implications of plasticity in clinical dysfunction and propose novel methods of eliciting brainstem responses that could specify the biological nature of auditory processing deficits.

Keywords

Predictive coding ABR Stimulus-specific adaptation Auditory Plasticity 

Notes

Acknowledgments

The authors would like to thank members of the SoundBrain Lab and the Auditory Neuroscience Lab for their valuable comments on an earlier version of the manuscript. This work was supported by National Institute on Deafness and Other Communication Disorders Grant R01 DC008333.

References

  1. Ahissar M, Hochstein S (2004) The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci 8(10):457–464. doi: 10.1016/j.tics.2004.08.011 PubMedGoogle Scholar
  2. Ahissar M, Lubin Y, Putter-Katz H, Banai K (2006) Dyslexia and the failure to form a perceptual anchor. Nat Neurosci 9(12):1558–1564. doi: 10.1038/nn1800 PubMedGoogle Scholar
  3. Anderson S, Kraus N (2010a) Objective neural indices of speech-in-noise perception. Trends Amplif 14(2):73–83. doi: 10.1177/1084713810380227 PubMedCentralPubMedGoogle Scholar
  4. Anderson S, Kraus N (2010b) Objective neural indices of speech-in-noise perception. Trends Amplif 14(2):73–83. doi: 10.1177/1084713810380227 PubMedCentralPubMedGoogle Scholar
  5. Anderson S, Kraus N (2010c) Sensory-cognitive interaction in the neural encoding of speech in noise: a review. J Am Acad Audiol 21(9):575–585. doi: 10.3766/jaaa.21.9.3 PubMedCentralPubMedGoogle Scholar
  6. Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37(1):52–62. doi: 10.1111/ejn.12018 PubMedGoogle Scholar
  7. Anderson S, Skoe E, Chandrasekaran B, Kraus N (2010a) Neural timing is linked to speech perception in noise. J Neurosci 30(14):4922–4926. doi: 10.1523/JNEUROSCI.0107-10.2010 PubMedGoogle Scholar
  8. Anderson S, Skoe E, Chandrasekaran B, Zecker S, Kraus N (2010b) Brainstem correlates of speech-in-noise perception in children. Hear Res 270(1–2):151–157. doi: 10.1016/j.heares.2010.08.001 PubMedCentralPubMedGoogle Scholar
  9. Anderson S, Parbery-Clark A, Yi HG, Kraus N (2011) A neural basis of speech-in-noise perception in older adults. Ear Hear 32(6):750–757. doi: 10.1097/AUD.0b013e31822229d3 PubMedCentralPubMedGoogle Scholar
  10. Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2012) Aging affects neural precision of speech encoding. J Neurosci 32(41):14156–14164. doi: 10.1523/JNEUROSCI.2176-12.2012 PubMedCentralPubMedGoogle Scholar
  11. Anderson S, Parbery-Clark A, White-Schwoch T, Drehobl S, Kraus N (2013a) Effects of hearing loss on the subcortical representation of speech cues. J Acoust Soc Am 133:3030PubMedCentralPubMedGoogle Scholar
  12. Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N (2013b) A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hear Res. doi: 10.1016/j.heares.2013.03.006 PubMedCentralGoogle Scholar
  13. Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N (2013c) Reversal of age-related neural timing delays with training. Proc Natl Acad Sci USA 110(11):4357–4362. doi: 10.1073/pnas.1213555110 PubMedCentralPubMedGoogle Scholar
  14. Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31(47):17306–17316. doi: 10.1523/JNEUROSCI.1915-11.2011 PubMedGoogle Scholar
  15. Bajo VM, Nodal FR, Moore DR, King AJ (2010) The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci 13(2):253–260. doi: 10.1038/nn.2466 PubMedCentralPubMedGoogle Scholar
  16. Banai K, Abrams D, Kraus N (2007) Sensory-based learning disability: insights from brainstem processing of speech sounds. Int J Audiol 46(9):524–532. doi: 10.1080/14992020701383035 PubMedGoogle Scholar
  17. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009a) Reading and subcortical auditory function. Cereb Cortex 19(11):2699–2707. doi: 10.1093/cercor/bhp024 PubMedCentralPubMedGoogle Scholar
  18. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009b) Reading and subcortical auditory function. Cereb Cortex 19(11):2699–2707. doi: 10.1093/cercor/bhp024 PubMedCentralPubMedGoogle Scholar
  19. Basu M, Krishnan A, Weber-Fox C (2010) Brainstem correlates of temporal auditory processing in children with specific language impairment. Dev Sci 13(1):77–91. doi: 10.1111/j.1467-7687.2009.00849.x PubMedGoogle Scholar
  20. Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86(11):2564–2578. doi: 10.1002/jnr.21699 PubMedCentralPubMedGoogle Scholar
  21. Bauerle P, von der Behrens W, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31(26):9708–9722. doi: 10.1523/JNEUROSCI.5814-10.2011 PubMedGoogle Scholar
  22. Baumann S, Griffiths TD, Sun L, Petkov CI, Thiele A, Rees A (2011) Orthogonal representation of sound dimensions in the primate midbrain. Nat Neurosci 14(4):423–425. doi: 10.1038/nn.2771 PubMedCentralPubMedGoogle Scholar
  23. Bidelman GM, Krishnan A (2010) Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Res 1355:112–125. doi: 10.1016/j.brainres.2010.07.100 PubMedCentralPubMedGoogle Scholar
  24. Bidelman GM, Gandour JT, Krishnan A (2011) Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. J Cogn Neurosci 23(2):425–434. doi: 10.1162/jocn.2009.21362 PubMedGoogle Scholar
  25. Billiet CR, Bellis TJ (2011) The relationship between brainstem temporal processing and performance on tests of central auditory function in children with reading disorders. J Speech Lang Hear Res 54(1):228–242. doi: 10.1044/1092-4388(2010/09-0239 PubMedGoogle Scholar
  26. Bishop D (2007) Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: where are we, and where should we be going? Psychol Bull 133(4):651PubMedGoogle Scholar
  27. Bradlow AR, Kraus N, Hayes E (2003) Speaking clearly for children with learning disabilities: sentence perception in noise. J Speech Lang Hear Res 46(1):80–97PubMedGoogle Scholar
  28. Carcagno S, Plack CJ (2011) Subcortical plasticity following perceptual learning in a pitch discrimination task. J Assoc Res Otolaryngol 12(1):89–100. doi: 10.1007/s10162-010-0236-1 PubMedCentralPubMedGoogle Scholar
  29. Centanni TM, Booker AB, Sloan AM, Chen F, Maher BJ, Carraway RS, Khodaparast N, Rennaker R, LoTurco JJ, Kilgard MP (2013) Knockdown of the Dyslexia-Associated Gene Kiaa0319 Impairs Temporal Responses to Speech Stimuli in Rat Primary Auditory Cortex. Cereb Cortex. doi: 10.1093/cercor/bht028 PubMedGoogle Scholar
  30. Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47(2):236–246. doi: 10.1111/j.1469-8986.2009.00928.x PubMedCentralPubMedGoogle Scholar
  31. Chandrasekaran B, Hornickel J, Skoe E, Nicol T, Kraus N (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron 64(3):311–319. doi: 10.1016/j.neuron.2009.10.006 PubMedCentralPubMedGoogle Scholar
  32. Chandrasekaran B, Kraus N, Wong P (2011) Human inferior colliculus activity relates to individual differences in spoken language learning. J Neurophysiol. doi: 10.1152/jn.00923.2011 PubMedCentralPubMedGoogle Scholar
  33. Chandrasekaran B, Kraus N, Wong PC (2012a) Human inferior colliculus activity relates to individual differences in spoken language learning. J Neurophysiol 107(5):1325–1336. doi: 10.1152/jn.00923.2011 PubMedCentralPubMedGoogle Scholar
  34. Chandrasekaran B, Kraus N, Wong PC (2012b) Human inferior colliculus activity relates to individual differences in spoken language learning. J Neurophysiol 107(5):1325–1336. doi: 10.1152/jn.00923.2011 PubMedCentralPubMedGoogle Scholar
  35. Cheung MM, Lau C, Zhou IY, Chan KC, Zhang JW, Fan SJ, Wu EX (2012) High fidelity tonotopic mapping using swept source functional magnetic resonance imaging. Neuroimage 61(4):978–986. doi: 10.1016/j.neuroimage.2012.03.031 PubMedGoogle Scholar
  36. Conway CM, Pisoni DB, Kronenberger WG (2009) The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Curr Dir Psychol Sci 18(5):275–279. doi: 10.1111/j.1467-8721.2009.01651.x PubMedCentralPubMedGoogle Scholar
  37. Dahmen JC, Keating P, Nodal FR, Schulz AL, King AJ (2010) Adaptation to stimulus statistics in the perception and neural representation of auditory space. Neuron 66(6):937–948. doi: 10.1016/j.neuron.2010.05.018 PubMedCentralPubMedGoogle Scholar
  38. de Boer J, Thornton AR (2008) Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task. J Neurosci 28(19):4929–4937. doi: 10.1523/JNEUROSCI.0902-08.2008 PubMedGoogle Scholar
  39. De Martino F, Moerel M, van de Moortele PF, Ugurbil K, Goebel R, Yacoub E, Formisano E (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386. doi: 10.1038/ncomms2379 PubMedCentralPubMedGoogle Scholar
  40. Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8(12):1684–1689. doi: 10.1038/nn1541 PubMedGoogle Scholar
  41. Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32(49):17762–17774. doi: 10.1523/JNEUROSCI.3190-12.2012 PubMedGoogle Scholar
  42. Escabi MA, Miller LM, Read HL, Schreiner CE (2003) Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus. J Neurosci 23(37):11489–11504PubMedGoogle Scholar
  43. Evans JL, Saffran JR, Robe-Torres K (2009) Statistical learning in children with specific language impairment. J Speech Lang Hear Res 52(2):321–335. doi: 10.1044/1092-4388(2009/07-0189 PubMedGoogle Scholar
  44. Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49):16475–16484. doi: 10.1523/JNEUROSCI.2793-10.2010 PubMedGoogle Scholar
  45. Feldman H, Friston KJ (2010) Attention, uncertainty, and free-energy. Front Hum Neurosci 4:215. doi: 10.3389/fnhum.2010.00215 PubMedCentralPubMedGoogle Scholar
  46. Feldman DE, Knudsen EI (1997) An anatomical basis for visual calibration of the auditory space map in the barn owl’s midbrain. J Neurosci 17(17):6820–6837PubMedGoogle Scholar
  47. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B 360(1456):815–836. doi: 10.1098/rstb2005.1622 Google Scholar
  48. Friston K (2012) Prediction, perception and agency. Int J Psychophysiol 83(2):248–252. doi: 10.1016/j.ijpsycho.2011.11.014 PubMedCentralPubMedGoogle Scholar
  49. Galbraith GC, Arroyo C (1993) Selective attention and brainstem frequency-following responses. Biol Psychol 37(1):3–22PubMedGoogle Scholar
  50. Galbraith GC, Arbagey PW, Branski R, Comerci N, Rector PM (1995) Intelligible speech encoded in the human brain stem frequency-following response. Neuroreport 6(17):2363–2367PubMedGoogle Scholar
  51. Galbraith GC, Jhaveri SP, Kuo J (1997) Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition. Electroencephalogr Clin Neurophysiol 102(1):46–53PubMedGoogle Scholar
  52. Galbraith GC, Olfman DM, Huffman TM (2003) Selective attention affects human brain stem frequency-following response. Neuroreport 14(5):735–738. doi: 10.1097/01.wnr.0000064983.96259.49 PubMedGoogle Scholar
  53. Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci USA 95(21):12663–12670PubMedCentralPubMedGoogle Scholar
  54. Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM (2008) The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage 42(2):936–944. doi: 10.1016/j.neuroimage.2008.05.018 PubMedCentralPubMedGoogle Scholar
  55. Garrido MI, Kilner JM, Kiebel SJ, Friston KJ (2009a) Dynamic causal modeling of the response to frequency deviants. J Neurophysiol 101(5):2620–2631. doi: 10.1152/jn.90291.2008 PubMedCentralPubMedGoogle Scholar
  56. Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009b) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120(3):453–463. doi: 10.1016/j.clinph.2008.11.029 PubMedCentralPubMedGoogle Scholar
  57. Gold JI, Knudsen EI (2000) A site of auditory experience-dependent plasticity in the neural representation of auditory space in the barn owl’s inferior colliculus. J Neurosci 20(9):3469–3486PubMedGoogle Scholar
  58. Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR, Kiang NY, Fullerton BC, Weisskoff RM (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6(1):33–41PubMedCentralPubMedGoogle Scholar
  59. Hairston WD, Letowski TR, McDowell K (2013) Task-related suppression of the brainstem frequency following response. PLoS One 8(2):e55215. doi: 10.1371/journal.pone.0055215 PubMedCentralPubMedGoogle Scholar
  60. Hatano M, Ito M, Yoshizaki T, Kelly JB (2012) Changes in projections to the inferior colliculus following early hearing loss in rats. Hear Res 287(1–2):57–66. doi: 10.1016/j.heares.2012.03.011 PubMedGoogle Scholar
  61. Hecox K, Galambos R (1974) Brain stem auditory evoked responses in human infants and adults. Arch Otolaryngol 99(1):30–33. doi: 10.1001/archotol.1974.00780030034006 PubMedGoogle Scholar
  62. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8(5):393–402. doi: 10.1038/nrn2113 PubMedGoogle Scholar
  63. Hohwy J, Roepstorff A, Friston K (2008) Predictive coding explains binocular rivalry: an epistemological review. Cognition 108(3):687–701. doi: 10.1016/j.cognition.2008.05.010 PubMedGoogle Scholar
  64. Hornickel J, Kraus N (2013) Unstable representation of sound: a biological marker of dyslexia. J Neurosci 33(8):3500–3504. doi: 10.1523/JNEUROSCI.4205-12.2013 PubMedCentralPubMedGoogle Scholar
  65. Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009a) Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proc Natl Acad Sci USA 106(31):13022–13027. doi: 10.1073/pnas.0901123106 PubMedCentralPubMedGoogle Scholar
  66. Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009b) Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proc Natl Acad Sci USA 106(31):13022–13027. doi: 10.1073/pnas.0901123106 PubMedCentralPubMedGoogle Scholar
  67. Hornickel J, Chandrasekaran B, Zecker S, Kraus N (2011) Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children. Behav Brain Res 216(2):597–605. doi: 10.1016/j.bbr.2010.08.051 PubMedCentralPubMedGoogle Scholar
  68. Hornickel J, Anderson S, Skoe E, Yi HG, Kraus N (2012) Subcortical representation of speech fine structure relates to reading ability. Neuroreport 23(1):6–9. doi: 10.1097/WNR.0b013e32834d2ffd PubMedCentralPubMedGoogle Scholar
  69. Huffman RF, Henson OW Jr (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Brain Res Rev 15(3):295–323PubMedGoogle Scholar
  70. Jeng FC, Hu J, Dickman B, Montgomery-Reagan K, Tong M, Wu G, Lin CD (2011) Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults. Ear Hear 32(6):699–707. doi: 10.1097/AUD.0b013e31821cc0df PubMedGoogle Scholar
  71. Kilgard MP (2012) Harnessing plasticity to understand learning and treat disease. Trends Neurosci 35(12):715–722. doi: 10.1016/j.tins.2012.09.002 PubMedCentralPubMedGoogle Scholar
  72. King C, Warrier CM, Hayes E, Kraus N (2002) Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci Lett 319(2):111–115PubMedGoogle Scholar
  73. Kitzes L (1984) Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus. Brain Res 306(1):171–178PubMedGoogle Scholar
  74. Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56(1):259–269. doi: 10.1016/j.brainresrev.2007.07.021 PubMedGoogle Scholar
  75. Kraus N (2001) Auditory pathway encoding and neural plasticity in children with learning problems. Audiol Neurootol 6(4):221–227PubMedGoogle Scholar
  76. Kraus N, Chandrasekaran B (2010) Music training for the development of auditory skills. Nat Rev Neurosci 11(8):599–605PubMedGoogle Scholar
  77. Krishnan A, Gandour JT (2009) The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain Lang 110(3):135–148. doi: 10.1016/j.bandl.2009.03.005 PubMedCentralPubMedGoogle Scholar
  78. Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res Cogn Brain Res 25(1):161–168. doi: 10.1016/j.cogbrainres.2005.05.004 PubMedGoogle Scholar
  79. Krishnan A, Swaminathan J, Gandour JT (2009a) Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context. J Cogn Neurosci 21(6):1092–1105. doi: 10.1162/jocn.2009.21077 PubMedGoogle Scholar
  80. Krishnan A, Swaminathan J, Gandour JT (2009b) Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context. J Cogn Neurosci 21(6):1092–1105. doi: 10.1162/jocn.2009.21077 PubMedGoogle Scholar
  81. Krishnan A, Bidelman GM, Gandour JT (2010a) Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices. Hear Res 268(1–2):60–66. doi: 10.1016/j.heares.2010.04.016 PubMedCentralPubMedGoogle Scholar
  82. Krishnan A, Gandour JT, Bidelman GM (2010b) The effects of tone language experience on pitch processing in the brainstem. J Neurolinguistics 23(1):81–95. doi: 10.1016/j.jneuroling.2009.09.001 PubMedCentralPubMedGoogle Scholar
  83. Krishnan A, Gandour JT, Smalt CJ, Bidelman GM (2010c) Language-dependent pitch encoding advantage in the brainstem is not limited to acceleration rates that occur in natural speech. Brain Lang 114(3):193–198. doi: 10.1016/j.bandl.2010.05.004 PubMedCentralPubMedGoogle Scholar
  84. Krizman J, Marian V, Shook A, Skoe E, Kraus N (2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci USA 109(20):7877–7881. doi: 10.1073/pnas.1201575109 PubMedCentralPubMedGoogle Scholar
  85. Kumar S, Sedley W, Nourski KV, Kawasaki H, Oya H, Patterson RD, Howard MA 3rd, Friston KJ, Griffiths TD (2011) Predictive coding and pitch processing in the auditory cortex. J Cogn Neurosci 23(10):3084–3094. doi: 10.1162/jocn_a_00021 PubMedGoogle Scholar
  86. Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29(17):5483–5493. doi: 10.1523/JNEUROSCI.4153-08.2009 PubMedCentralPubMedGoogle Scholar
  87. Marmel F, Parbery-Clark A, Skoe E, Nicol T, Kraus N (2011) Harmonic relationships influence auditory brainstem encoding of chords. Neuroreport 22(10):504–508. doi: 10.1097/WNR.0b013e328348ab19 PubMedGoogle Scholar
  88. McAlpine D, Martin RL, Mossop JE, Moore DR (1997) Response properties of neurons in the inferior colliculus of the monaurally deafened ferret to acoustic stimulation of the intact ear. J Neurophysiol 78(2):767–779PubMedGoogle Scholar
  89. Mulders WH, Seluakumaran K, Robertson D (2010) Efferent pathways modulate hyperactivity in inferior colliculus. J Neurosci 30(28):9578–9587. doi: 10.1523/JNEUROSCI.2289-10.2010 PubMedGoogle Scholar
  90. Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci USA 104(40):15894–15898. doi: 10.1073/pnas.0701498104 PubMedCentralPubMedGoogle Scholar
  91. Näätänen R (2003) Mismatch negativity: clinical research and possible applications. Int J Psychophysiol 48(2):179–188PubMedGoogle Scholar
  92. Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590. doi: 10.1016/j.clinph.2007.04.026 PubMedGoogle Scholar
  93. Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21(3):214–223. doi: 10.1027/0269-8803.21.34.214 Google Scholar
  94. Oganian Y, Ahissar M (2012) Poor anchoring limits dyslexics’ perceptual, memory, and reading skills. Neuropsychologia 50(8):1895–1905. doi: 10.1016/j.neuropsychologia.2012.04.014 PubMedGoogle Scholar
  95. Parbery-Clark A, Skoe E, Kraus N (2009) Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci 29(45):14100–14107. doi: 10.1523/JNEUROSCI.3256-09.2009 PubMedGoogle Scholar
  96. Parbery-Clark A, Strait DL, Kraus N (2011) Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia 49(12):3338–3345. doi: 10.1016/j.neuropsychologia.2011.08.007 PubMedCentralPubMedGoogle Scholar
  97. Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30(6):1772–1782PubMedGoogle Scholar
  98. Parvizi J (2009) Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 13(8):354–359. doi: 10.1016/j.tics.2009.04.008 PubMedGoogle Scholar
  99. Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22(11):2879–2885. doi: 10.1111/j.1460-9568.2005.04472.x PubMedGoogle Scholar
  100. Peruzzi D, Sivaramakrishnan S, Oliver DL (2000) Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101(2):403–416PubMedGoogle Scholar
  101. Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12(6):718–724. doi: 10.1038/nn.2331 PubMedCentralPubMedGoogle Scholar
  102. Rauss K, Schwartz S, Pourtois G (2011) Top-down effects on early visual processing in humans: a predictive coding framework. Neurosci Biobehav Rev 35(5):1237–1253. doi: 10.1016/j.neubiorev.2010.12.011 PubMedGoogle Scholar
  103. Reed A, Riley J, Carraway R, Carrasco A, Perez C, Jakkamsetti V, Kilgard MP (2011) Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 70(1):121–131. doi: 10.1016/j.neuron.2011.02.038 PubMedGoogle Scholar
  104. Ress D, Chandrasekaran B (2013) Tonotopic organization in the depth of human inferior colliculus. Front Hum Neurosci 7:586PubMedCentralPubMedGoogle Scholar
  105. Rinne T, Balk MH, Koistinen S, Autti T, Alho K, Sams M (2008a) Auditory selective attention modulates activation of human inferior colliculus. J Neurophysiol 100(6):3323–3327. doi: 10.1152/jn.90607.2008 PubMedGoogle Scholar
  106. Rinne T, Balk MH, Koistinen S, Autti T, Alho K, Sams M (2008b) Auditory selective attention modulates activation of human inferior colliculus. J Neurophysiol 100(6):3323–3327. doi: 10.1152/jn.90607.2008 PubMedGoogle Scholar
  107. Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2011) Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc Natl Acad Sci USA 108(37):15516–15521. doi: 10.1073/pnas.1108912108 PubMedCentralPubMedGoogle Scholar
  108. Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N (2005) Auditory training improves neural timing in the human brainstem. Behav Brain Res 156(1):95–103. doi: 10.1016/j.bbr.2004.05.012 PubMedGoogle Scholar
  109. Russo NM, Skoe E, Trommer B, Nicol T, Zecker S, Bradlow A, Kraus N (2008) Deficient brainstem encoding of pitch in children with Autism Spectrum Disorders. Clin Neurophysiol 119(8):1720–1731. doi: 10.1016/j.clinph.2008.01.108 PubMedCentralPubMedGoogle Scholar
  110. Russo N, Nicol T, Trommer B, Zecker S, Kraus N (2009a) Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci 12(4):557–567. doi: 10.1111/j.1467-7687.2008.00790.x PubMedCentralPubMedGoogle Scholar
  111. Russo N, Nicol T, Trommer B, Zecker S, Kraus N (2009b) Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci 12(4):557–567. doi: 10.1111/j.1467-7687.2008.00790.x PubMedCentralPubMedGoogle Scholar
  112. SanMiguel I, Widmann A, Bendixen A, Trujillo-Barreto N, Schröger E (2013) Hearing Silences: human auditory processing relies on preactivation of sound-specific brain activity patterns. J Neurosci 33(20):8633–8639. doi: 10.1523/jneurosci.5821-12.2013 PubMedGoogle Scholar
  113. Skoe E, Kraus N (2010a) Hearing it again and again: on-line subcortical plasticity in humans. PLoS One 5(10):e13645. doi: 10.1371/journal.pone.0013645 PubMedCentralPubMedGoogle Scholar
  114. Skoe E, Kraus N (2010b) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31(3):302–324PubMedCentralPubMedGoogle Scholar
  115. Skoe E, Kraus N (2013) Musical training heightens auditory brainstem function during sensitive periods in development. Front Psychol 4:622PubMedCentralPubMedGoogle Scholar
  116. Skoe E, Krizman J, Kraus N (in press) The impoverished brain: disparities in maternal education affect the neural response to sound. J NeurosciGoogle Scholar
  117. Skoe E, Krizman J, Spitzer E, Kraus N (2013) The auditory brainstem is a barometer of rapid auditory learning. Neuroscience 243:104–114. doi: 10.1016/j.neuroscience.2013.03.009 PubMedGoogle Scholar
  118. Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32(4):1447–1452. doi: 10.1523/JNEUROSCI.2557-11.2012 PubMedGoogle Scholar
  119. Smith JC, Marsh JT, Brown WS (1975) Far-field recorded frequency-following responses: evidence for the locus of brainstem sources. Electroencephalogr Clin Neurophysiol 39(5):465–472PubMedGoogle Scholar
  120. Smith JC, Marsh JT, Greenberg S, Brown WS (1978) Human auditory frequency-following responses to a missing fundamental. Science 201(4356):639–641PubMedGoogle Scholar
  121. Sohmer H, Pratt H, Kinarti R (1977) Sources of frequency following responses (FFR) in man. Electroencephalogr Clin Neurophysiol 42(5):656–664PubMedGoogle Scholar
  122. Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29(1):13–26. doi: 10.1111/j.1471-4159.1977.tb03919.x PubMedGoogle Scholar
  123. Song JH, Skoe E, Wong PC, Kraus N (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J Cogn Neurosci 20(10):1892–1902. doi: 10.1162/jocn.2008.20131 PubMedCentralPubMedGoogle Scholar
  124. Song JH, Skoe E, Banai K, Kraus N (2011a) Perception of speech in noise: neural correlates. J Cogn Neurosci 23(9):2268–2279. doi: 10.1162/jocn.2010.21556 PubMedCentralPubMedGoogle Scholar
  125. Song JH, Skoe E, Banai K, Kraus N (2011b) Perception of speech in noise: neural correlates. J Cogn Neurosci 23(9):2268–2279. doi: 10.1162/jocn.2010.21556 PubMedCentralPubMedGoogle Scholar
  126. Song JH, Skoe E, Banai K, Kraus N (2012) Training to improve hearing speech in noise: biological mechanisms. Cereb Cortex 22(5):1180–1190. doi: 10.1093/cercor/bhr196 PubMedCentralPubMedGoogle Scholar
  127. Steinmann I, Gutschalk A (2011) Potential fMRI correlates of 40-Hz phase locking in primary auditory cortex, thalamus and midbrain. Neuroimage 54(1):495–504. doi: 10.1016/j.neuroimage.2010.07.064 PubMedGoogle Scholar
  128. Suga N (2008) Role of corticofugal feedback in hearing. J Comp Physiol A 194(2):169–183. doi: 10.1007/s00359-007-0274-2 Google Scholar
  129. Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97(22):11807–11814. doi: 10.1073/pnas.97.22.11807 PubMedCentralPubMedGoogle Scholar
  130. Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36(1):9–18PubMedGoogle Scholar
  131. Swaminathan J, Krishnan A, Gandour JT (2008) Pitch encoding in speech and nonspeech contexts in the human auditory brainstem. Neuroreport 19(11):1163–1167. doi: 10.1097/WNR.0b013e3283088d31 PubMedGoogle Scholar
  132. Tzounopoulos T, Kraus N (2009) Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron 62(4):463–469. doi: 10.1016/j.neuron.2009.05.002 PubMedCentralPubMedGoogle Scholar
  133. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398. doi: 10.1038/nn1032 PubMedGoogle Scholar
  134. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453. doi: 10.1523/JNEUROSCI.1905-04.2004 PubMedGoogle Scholar
  135. Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86(3):506–517PubMedGoogle Scholar
  136. Wen B, Wang GI, Dean I, Delgutte B (2009) Dynamic range adaptation to sound level statistics in the auditory nerve. J Neurosci 29(44):13797–13808. doi: 10.1523/JNEUROSCI.5610-08.2009 PubMedCentralPubMedGoogle Scholar
  137. Wible B, Nicol T, Kraus N (2004) Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biol Psychol 67(3):299–317. doi: 10.1016/j.biopsycho.2004.02.002 PubMedGoogle Scholar
  138. Wijnen F, Kappers AM, Vlutters LD, Winkel S (2012) Auditory frequency discrimination in adults with dyslexia: a test of the anchoring hypothesis. J Speech Lang Hear Res 55(5):1387–1394. doi: 10.1044/1092-4388(2012/10-0302 PubMedGoogle Scholar
  139. Winer JA (2005) Decoding the auditory corticofugal systems. Hear Res 207(1–2):1–9. doi: 10.1016/j.heares.2005.06.007 PubMedGoogle Scholar
  140. Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212(1–2):1–8PubMedGoogle Scholar
  141. Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400(2):147–174PubMedGoogle Scholar
  142. Wong PC, Skoe E, Russo NM, Dees T, Kraus N (2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci 10(4):420–422. doi: 10.1038/nn1872 PubMedGoogle Scholar
  143. Wu Y, Yan J (2007) Modulation of the receptive fields of midbrain neurons elicited by thalamic electrical stimulation through corticofugal feedback. J Neurosci 27(40):10651–10658. doi: 10.1523/JNEUROSCI.1320-07.2007 PubMedGoogle Scholar
  144. Xu Y, Krishnan A, Gandour JT (2006) Specificity of experience-dependent pitch representation in the brainstem. Neuroreport 17(15):1601–1605PubMedGoogle Scholar
  145. Zhou X, Jen PH (2007) Corticofugal modulation of multi-parametric auditory selectivity in the midbrain of the big brown bat. J Neurophysiol 98(5):2509–2516. doi: 10.1152/jn.00613.2007 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bharath Chandrasekaran
    • 1
  • Erika Skoe
    • 2
  • Nina Kraus
    • 3
    • 4
  1. 1.Department of Communication Sciences and Disorders, Center for Perceptual Systems, Institute for NeuroscienceThe University of Texas at AustinAustinUSA
  2. 2.Department of Speech, Language and Hearing Sciences, Department of Psychology, and Cognitive Science ProgramThe University of ConnecticutStorrsUSA
  3. 3.Auditory Neuroscience Laboratory, Department of Communication SciencesNorthwestern UniversityEvanstonUSA
  4. 4.Department of Neurobiology, Physiology, and OtolaryngologyNorthwestern UniversityEvanstonUSA

Personalised recommendations