Brain Topography

, Volume 27, Issue 2, pp 258–270 | Cite as

Parieto-Frontal Circuits During Observation of Hidden and Visible Motor Acts in Children. A High-density EEG Source Imaging Study

  • Cristina Berchio
  • Tonia A. Rihs
  • Christoph M. Michel
  • Denis Brunet
  • Fabio Apicella
  • Filippo Muratori
  • Vittorio Gallese
  • Maria A. Umiltà
Original Paper

Abstract

Several studies showed that in the human brain specific premotor and parietal areas are activated during the execution and observation of motor acts. The activation of this premotor-parietal network displaying the so-called Mirror Mechanism (MM) was proposed to underpin basic forms of action understanding. However, the functional properties of the MM in children are still largely unknown. In order to address this issue, we recorded high-density EEG from 12 children (6 female, 6 male; average age 10.5, SD ±2.15). Data were collected when children observed video clips showing hands grasping objects in two different experimental conditions: (1) Full Vision, in which the motor act was fully visible; (2) Hidden, in which the interaction between the hand and the object was not visible. Event-related potentials (ERPs) and topographic map analyses were used to investigate the temporal pattern of the ERPs and their brain source of localization, employing a children template of the Montreal Neurological Institute. Results showed that two different parieto-premotor circuits are activated by the observation of object-related hand reaching-to-grasping motor acts in children. The first circuit comprises the ventral premotor and the inferior parietal cortices. The second one comprises the dorsal premotor and superior parietal cortices. The activation of both circuits is differently lateralized and modulated in time, and influenced by the amount of visual information available about the hand grasping-related portion of the observed motor acts.

Keywords

Brain circuits Children ERP Mirror Mechanism Source localization 

References

  1. Bernier R, Dawson G, Webb S, Murias M (2007) EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn 64(3):228–237PubMedCentralPubMedCrossRefGoogle Scholar
  2. Boria S, Fabbri-Destro M, Cattaneo L, Sparaci L, Sinigaglia C, Santelli E, Cossu G, Rizzolatti G (2009) Intention understanding in autism. PLoS One 4(5):e5596PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brass M, Schmitt RM, Spengler S, Gergely G (2007) Investigating action understanding: inferential processes versus action simulation. Curr Biol 17:2117–2121PubMedCrossRefGoogle Scholar
  4. Brett M (2006) The MNI brain and the Talairach atlas. http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach. Accessed 12 Dec 2012
  5. Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 2011:813870. doi:10.1155/2011/813870 PubMedCentralPubMedGoogle Scholar
  6. Cattaneo L, Fabbi-Destro M, Boria S, Pieraccini C, Monti A, Cossu G, Rizzolatti G (2007) Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci USA 104:17825–17830PubMedCrossRefGoogle Scholar
  7. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16(2):205–212PubMedCrossRefGoogle Scholar
  8. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, Iacoboni M (2006) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9(1):28–30PubMedCentralPubMedCrossRefGoogle Scholar
  9. de Peralta G, Menendez R, Gonzalez Andino S, Lantz G, Michel CM, Landis T (2001) Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations. Brain Topogr 14(2):131–137CrossRefGoogle Scholar
  10. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91(1):176–180PubMedCrossRefGoogle Scholar
  11. Fabbri-Destro M, Cattaneo L, Boria S, Rizzolatti G (2009) Planning actions in autism. Exp Brain Res 192(3):521–525. doi:10.1007/s00221-008-1578-3 PubMedCrossRefGoogle Scholar
  12. Ferrari PF, Vanderwert RE, Paukner A, Bower S, Suomi SJ, Fox NA (2012) Distinct EEG amplitude suppression to facial gestures as evidence for a mirror mechanism in newborn monkeys. J Cogn Neurosci 24(5):1165–1172. doi:10.1162/jocn_a_00198 Epub 2012 Jan 30PubMedCrossRefGoogle Scholar
  13. Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37(4):1315–1328PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fonov VS, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, BDCG (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327. doi:10.1016/j.neuroimage.2010.07.033 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage vol 47 (supplement 1). Organization for Human Brain Mapping 2009 Annual Meeting. doi: 10.1016/S1053-8119(09)70884-5
  16. Gallese V, Sinigaglia C (2011) What is so special about embodied simulation? Trends Cogn Sci. 15(11):512–519PubMedCrossRefGoogle Scholar
  17. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRefGoogle Scholar
  18. Gallese V, Rochat M, Cossu G, Sinigaglia C (2009) Motor cognition and its role in the phylogeny and ontogeny of action understanding. Dev Psychol. 45(1):103–113PubMedCrossRefGoogle Scholar
  19. Gallese V, Rochat MJ, Berchio C (2012) The mirror mechanism and its potential role in autism spectrum disorder. Dev Med Child Neurol 55(1):15–22. doi:10.1111/j.1469-8749.2012.04398.x PubMedCrossRefGoogle Scholar
  20. Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19(6):1239–1255. doi:10.1093/cercor/bhn181 PubMedCrossRefGoogle Scholar
  21. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3(3):e79PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297(5582):846–848PubMedCrossRefGoogle Scholar
  23. Lepage JF, Théoret H (2006) EEG evidence for the presence of an action observation-execution matching system in children. Eur J Neurosci 23(9):2505–2510PubMedCrossRefGoogle Scholar
  24. Lepage JF, Théoret H (2007) The mirror neuron system: grasping others’ actions from birth? Dev Sci. 10(5):513–523PubMedCrossRefGoogle Scholar
  25. Marshall PJ, Meltzoff AN (2011) Neural mirroring systems: exploring the EEG mu rhythm in human infancy. Dev Cogn Neurosci 1(2):110–123. doi:10.1016/j.dcn.2010.09.001 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. Neuroimage. 61(2):371–385. doi:10.1016/j.neuroimage.2011.12.039 PubMedCrossRefGoogle Scholar
  27. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222PubMedCrossRefGoogle Scholar
  28. Molenberghs P, Hayward L, Mattingley JB, Cunnington R (2012) Activation patterns during action observation are modulated by context in mirror system areas. Neuroimage 59(1):608–615PubMedCrossRefGoogle Scholar
  29. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264. doi:10.1007/s10548-008-0054-5 PubMedCrossRefGoogle Scholar
  30. Muthukumaraswamy SD, Johnson BW (2004) Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology 41(1):152–156PubMedCrossRefGoogle Scholar
  31. Muthukumaraswamy SD, Johnson BW, McNair NA (2004) Mu rhythm modulation during observation of an object-directed grasp. Brain Res Cogn Brain Res 19(2):195–201PubMedCrossRefGoogle Scholar
  32. Nyström P (2008) The infant mirror neuron system studied with high density EEG. Soc Neurosci 3(3–4):334–347. doi:10.1080/17470910701563665 PubMedCrossRefGoogle Scholar
  33. Nyström P, Ljunghammar T, Rosander K, von Hofsten C (2011) Using mu rhythm desynchronization to measure mirror neuron activity in infants. Dev Sci. 14(2):327–335PubMedCrossRefGoogle Scholar
  34. Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA (2005) EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 24(2):190–198PubMedCrossRefGoogle Scholar
  35. Oberman LM, Ramachandran VS, Pineda JA (2008) Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia. 46(5):1558–1565PubMedCrossRefGoogle Scholar
  36. Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, Pineda JA (2012) Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci 8(3):300–304PubMedCrossRefGoogle Scholar
  37. Ortigue S, Sinigaglia C, Rizzolatti G, Grafton ST (2010) Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study. PLoS One 5(8):e12160. doi:10.1371/journal.pone.0012160 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Pineda JA (2005) The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev 50(1):57–68PubMedCrossRefGoogle Scholar
  39. Reid VM, Striano T, Iacoboni M (2011) Neural correlates of dyadic interaction during infancy. Dev Cogn Neurosci. 1(2):124–130. doi:10.1016/j.dcn.2011.01.001 PubMedCrossRefGoogle Scholar
  40. Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11(4):264–274PubMedCrossRefGoogle Scholar
  41. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3(2):131–141PubMedCrossRefGoogle Scholar
  42. Southgate V, Csibra G (2009) Inferring the outcome of an ongoing novel action at 13 months. Dev Psychol 45(6):1794–1798. doi:10.1037/a0017197 PubMedCrossRefGoogle Scholar
  43. Spinelli L, Andino SG, Lantz G, Seeck M, Michel CM (2000) Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr 13(2):115–125PubMedCrossRefGoogle Scholar
  44. Streltsova A, Berchio C, Gallese V, Umilta’ MA (2010) Time course and specificity of sensory-motor alpha modulation during the observation of hand motor acts and gestures: a high density EEG study. Exp Brain Res 205(3):363–373. doi:10.1007/s00221-010-2371-7 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) I know what you are doing. A neurophysiological study. Neuron 31(1):155–165PubMedCrossRefGoogle Scholar
  46. van Elk M, van Schie HT, Hunnius S, Vesper C, Bekkering H (2008) You’ll never crawl alone: neurophysiological evidence for experience-dependent motor resonance in infancy. Neuroimage 43(4):808–814. doi:10.1016/j.neuroimage.2008.07.05 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cristina Berchio
    • 1
    • 2
  • Tonia A. Rihs
    • 2
  • Christoph M. Michel
    • 2
    • 3
  • Denis Brunet
    • 2
  • Fabio Apicella
    • 4
  • Filippo Muratori
    • 4
  • Vittorio Gallese
    • 1
  • Maria A. Umiltà
    • 1
  1. 1.Section of Physiology, Department of NeuroscienceUniversity of ParmaParmaItaly
  2. 2.Functional Brain Mapping Laboratory, Department of Fundamental NeurosciencesUniversity of GenevaGenevaSwitzerland
  3. 3.University HospitalGenevaSwitzerland
  4. 4.Stella Maris Scientific InstituteUniversity of PisaCalambroneItaly

Personalised recommendations