Advertisement

Brain Topography

, Volume 27, Issue 1, pp 123–137 | Cite as

Generalized Spike and Waves: Effect of Discharge Duration on Brain Networks as Revealed by BOLD fMRI

  • Matteo Pugnaghi
  • David W. Carmichael
  • Anna E. Vaudano
  • Umair J. Chaudhary
  • Francesca Benuzzi
  • Carlo Di Bonaventura
  • Anna T. Giallonardo
  • Roman Rodionov
  • Matthew C. Walker
  • John S. Duncan
  • Stefano Meletti
  • Louis Lemieux
Original Paper

Abstract

In the past decade, the possibility of combining recordings of EEG and functional MRI (EEG–fMRI), has brought a new insight into the brain network underlying generalized spike wave discharges (GSWD). Nevertheless, how GSWD duration influences this network is not fully understood. In this study we aim to investigate whether GSWD duration had a threshold (non-linear) and/or a linear effect on the amplitude of the associated BOLD changes in any brain regions. This could help in elucidating if there is an hemodynamic background supporting the differentiation between interictal and ictal events. We studied a population of 42 patients with idiopathic generalized epilepsies (IGE) who underwent resting-state EEG–fMRI recordings in three centres (London, UK; Modena, Italy; Rome, Italy), applying a parametric analysis of the GSWD duration. Patients were classified as having Childhood Absence epilepsy, Juvenile Absence Epilepsy, or Juvenile Myoclonic Epilepsy. At the population level linear GSWD duration-related BOLD signal changes were found in a network of brain regions: mainly BOLD increase in thalami and cerebral ventricles, and BOLD decrease in posterior cingulate, precuneus and bilateral parietal regions. No region of significant BOLD change was found in the group analysis for the non-linear effect of GSWD duration. To explore the possible effect of both the different IGE sub-syndromes and the different protocols and scanning equipment used in the study, a full-factorial ANOVA design was performed revealing no significant differences. These findings support the idea that the amplitude of the BOLD changes is linearly related to the GSWD duration with no universal threshold effect of spike and wave duration on the brain network supporting this activity.

Keywords

EEG–fMRI Idiopathic generalized epilepsy Generalized spike and wave Absence seizure BOLD effect 

Notes

Acknowledgments

This study was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. EEG–fMRI co-registrations in Modena-Italy were supported by a Grant of ‘‘Fondazione Cassa di Risparmio di Modena,’’ Modena, Italy: Ricerca Internazionale 2010. Moreover, the work was funded through a Grant from the Medical Research Council (MRC Grant Number G0301067), European Federation of Neurological Society (EFNS) fellowship (edition 2007/2008), Funding received from the Central and East London NIHR CLRN, Funding received by a Grant “Mechanism, diagnosis and treatment of drug-resistant epilepsy; Area 1a Innovative Research” from Emilia-Romagna Region, Italy. M.P. was supported by a PhD bursary from University of Modena and Reggio Emilia. A.E.V. was supported by a research bursary from the Grant “Ricerca Internazionale 2010” of “Fondazione Cassa di Risparmio di Modena”. U.C. was funded by the Higher Education Commission of Pakistan. We are grateful to the Epilepsy Society, Chalfont St Peter, Buckinghamshire-UK, for supporting the MRI scanner and research facilities.

Conflict of Interest

We have no conflicts of interest to declare.

References

  1. Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, Gotman J (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:1127–1144PubMedCrossRefGoogle Scholar
  2. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239PubMedCrossRefGoogle Scholar
  3. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239PubMedCrossRefGoogle Scholar
  4. Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic timecourse of typical childhood absence seizures: EEG, behavior and functional magnetic resonance imaging. J Neurosci 30(17):5884–5893PubMedCentralPubMedCrossRefGoogle Scholar
  5. Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, Cantalupo G, Beccaria F, Nichelli P, Meletti S (2012) Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia 53(4):622–630PubMedCrossRefGoogle Scholar
  6. Berman R, Negishi M, Vestal M, Spann M, Chung MH, Bai X, Purcaro M, Motelow JE, Danielson N, Dix-Cooper L, Enev M, Novotny EJ, Constable RT, Blumenfeld H (2010) Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia 51(10):2011–2022PubMedCentralPubMedCrossRefGoogle Scholar
  7. Browne TR, Penry JK, Proter RJ, Dreifuss FE (1974) Responsiveness before, during, and after spike-wave paroxysms. Neurology 24:659–665PubMedCrossRefGoogle Scholar
  8. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  9. Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26(7):870–873PubMedCentralPubMedCrossRefGoogle Scholar
  10. Carney PW, Masterton RA, Harvey AS, Scheffer IE, Berkovic SF, Jackson GD (2010) The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology 75:904–911PubMedCrossRefGoogle Scholar
  11. Chaudhary UJ, Centeno M, Carmichael DW, Vollmar C, Rodionov R, Bonelli S, Stretton J, Pressler R, Eriksson SH, Sisodiya S, Friston K, Duncan JS, Lemieux L, Koepp M (2012) Imaging the Interaction: Epileptic Discharges, Working Memory, and Behavior. Hum Brain Mapp. doi: 10.1002/hbm.22115 PubMedGoogle Scholar
  12. Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399CrossRefGoogle Scholar
  13. Danielson NB, Guo JN, Blumenfeld H (2011) The default mode network and altered consciousness in epilepsy. Behav Neurol 24(1):55–65PubMedCentralPubMedGoogle Scholar
  14. Davidoff RA, Johnson LC (1964) Paroxysmal EEG Activity and Cognitive-Motor Performance. Electroencephalogr Clin Neurophysiol 16:343–354PubMedCrossRefGoogle Scholar
  15. Dehaene S, Naccache L, Le Clec’H G, Koechlin E, Mueller M, Dehaene-Lambertz G, van de Moortele PF, Le Bihan D (1998) Imaging unconscious semantic priming. Nature 8 395(6702):597–600CrossRefGoogle Scholar
  16. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21PubMedCrossRefGoogle Scholar
  17. Formisano E, Linden DE, Di Salle F, Trojano L, Esposito F, Sack AT, Grossi D, Zanella FE, Goebel R (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35(1):185–194PubMedCrossRefGoogle Scholar
  18. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355PubMedCrossRefGoogle Scholar
  19. Gholipour T, Moeller F, Pittau F, Dubeau F, Gotman J (2011) Reproducibility of interictal EEG–fMRI results in patients with epilepsy. Epilepsia 52(3):433–442PubMedCentralPubMedCrossRefGoogle Scholar
  20. Goode DJ, Penry JK, Dreifuss FE (1970) Effects of paroxysmal spike-wave on continuous visual-motor performance. Epilepsia 11:241–254PubMedCrossRefGoogle Scholar
  21. Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A 102:15236–15240PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gotman J, Kobayashi E, Bagshaw AP, Benar CG, Dubeau F (2006) Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 23:906–920PubMedCrossRefGoogle Scholar
  23. Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2010) Characterization of the hemodynamic modes associated with interictal epileptic activity using a deformable model-based analysis of combined EEG and functional MRI recordings. Hum Brain Mapp 31(8):1157–1173PubMedGoogle Scholar
  24. Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L (2006) EEG–fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 31:1700–1710PubMedCrossRefGoogle Scholar
  25. Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21:1639–1651PubMedCrossRefGoogle Scholar
  26. Henson RN, Price CJ, Rugg MD, Turner R, Friston KJ (2002) Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. Neuroimage 15(1):83–97PubMedCrossRefGoogle Scholar
  27. Holmes GL, McKeever M, Adamson M (1987) Absence seizures in children: clinical and electroencephalographic features. Ann. Neurol. 21:268–273PubMedCrossRefGoogle Scholar
  28. Krakow K, Allen PJ, Lemieux L, Symms MR, Fish DR (2000) Methodology: EEG-correlated fMRI. Adv Neurol 83:187–201PubMedGoogle Scholar
  29. Labate A, Briellmann RS, Abbott DF, Waites AB, Jackson GD (2005) Typical childhood absence seizures are associated with thalamic activation. Epileptic Disord 7:373–377PubMedGoogle Scholar
  30. Laufs H, Duncan JS (2007) Electroencephalography/functional MRI in human epilepsy: what it currently can and cannot do. Curr Opin Neurol 20:417–423PubMedCrossRefGoogle Scholar
  31. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100(19):11053–11058PubMedCrossRefGoogle Scholar
  32. Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K (2006) Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47:444–448PubMedCrossRefGoogle Scholar
  33. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559PubMedCrossRefGoogle Scholar
  34. Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38:943–952PubMedCrossRefGoogle Scholar
  35. Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, Krakow K, Turner R, Fish DR (2001) Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage 14:780–787PubMedCrossRefGoogle Scholar
  36. Li Q, Luo C, Yang T, Yao Z, He L, Liu L, Xu H, Gong Q, Yao D, Zhou D (2009) EEG–fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res 87(2–3):160–168PubMedCrossRefGoogle Scholar
  37. Liston AD, Lund TE, Salek-Haddadi A, Hamandi K, Friston KJ, Lemieux L (2006) Modelling cardiac signal as a confound in EEG-fMRI and its application in focal epilepsy studies. NeuroImage 30(3):827–834PubMedCrossRefGoogle Scholar
  38. Mirsky AF, Vanburen JM (1965) On the nature of the “absence” in centrencephalic epilepsy: a study of some behavioral, electroencephalographic and autonomic factors. Electroencephalogr Clin Neurophysiol 18:334–348PubMedCrossRefGoogle Scholar
  39. Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M (2008a) Simultaneous EEG–fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49:1510–1519PubMedCrossRefGoogle Scholar
  40. Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008b) Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849PubMedCrossRefGoogle Scholar
  41. Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M (2009) Mapping brain activity on the verge of a photically induced generalized tonic-clonic seizure. Epilepsia 50(6):1632–1637PubMedCrossRefGoogle Scholar
  42. Panayiotopoulos C (1997) Absences epilepsies. In: Engel JPT Jr (ed) Epilepsy: a comprehensive textbook. Lippincott-Raven, Philadelphia, pp 2327–2346Google Scholar
  43. Panayiotopoulos CP, Chroni E, Daskalopoulos C, Baker A, Rowlinson S, Walsh P (1992) Typical absence seizures in adults: clinical, EEG, video-EEG findings and diagnostic/syndromic considerations. J Neurol Neurosurg Psychiatr 55:1002–1008PubMedCrossRefGoogle Scholar
  44. Porter RJ, Penry JK (1973) Responsiveness at the onset of spike-wave bursts. Electroencephalogr Clin Neurophysiol 34:239–245PubMedCrossRefGoogle Scholar
  45. Pradhan C, Sinha S, Thennarasu K, Jagadisha T (2011) Quantitative analysis of heart rate variability in patients with absence epilepsy. Neurol India 59:25–29PubMedCrossRefGoogle Scholar
  46. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476PubMedCrossRefGoogle Scholar
  47. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedCrossRefGoogle Scholar
  48. Sadleir LG, Farrell K, Smith S, Connolly MB, Scheffer IE (2006) Electroclinical features of absence seizures in childhood absence epilepsy. Neurology 67:413–418PubMedCrossRefGoogle Scholar
  49. Sadleir LG, Scheffer IE, Smith S, Carstensen B, Carlin J, Connolly MB, Farrell K (2008) Factors influencing clinical features of absence seizures. Epilepsia 49(12):2100–2107PubMedCrossRefGoogle Scholar
  50. Sadleir LG, Scheffer IE, Smith S, Carstensen B, Farrell K, Connolly MB (2009) EEG features of absence seizures in idiopathic generalized epilepsy: impact of syndrome, age, and state. Epilepsia 50:1572–1578PubMedCrossRefGoogle Scholar
  51. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53:663–667PubMedCrossRefGoogle Scholar
  52. Schwab RS (1939) Method of measuring consciousness in attacks of petit mal epilepsy. Arch Neurol Psychiat (Chic) 41:215–217CrossRefGoogle Scholar
  53. Schwab RS (1941) The influence of visual and auditory stimuli on the electroencephalographic tracing of petit mal. Am J Psychiatr 97:1301–1312Google Scholar
  54. Schwab RS (1947) Reaction time in petit mal epilepsy. Res Publ Ass Res Nerv Ment Dis 26:339–341Google Scholar
  55. Tizard B, Margerison JH (1963) The relationship between generalized paroxysmal EEG. Discharges and various test situations in two epileptic patients. J Neurol Neurosurg Psychiatry 26:308–313PubMedCrossRefGoogle Scholar
  56. van Luijtelaar EL, de Bruijn SF, Declerck AC, Renier WO, Vossen JM, Coenen AM (1991) Disturbances in time estimation during absence seizures in children. Epilepsy Res 9:148–153PubMedCrossRefGoogle Scholar
  57. Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, Thornton R, Rodionov R, Friston KJ, Duncan JS, Lemieux L (2009) Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One 4(8):e6475PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matteo Pugnaghi
    • 1
    • 2
  • David W. Carmichael
    • 1
    • 3
  • Anna E. Vaudano
    • 1
    • 2
    • 4
  • Umair J. Chaudhary
    • 1
  • Francesca Benuzzi
    • 2
  • Carlo Di Bonaventura
    • 4
  • Anna T. Giallonardo
    • 4
  • Roman Rodionov
    • 1
  • Matthew C. Walker
    • 1
  • John S. Duncan
    • 1
  • Stefano Meletti
    • 2
  • Louis Lemieux
    • 1
    • 5
  1. 1.Department of Clinical and Experimental EpilepsyUCL Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
  2. 2.Department of Biomedical Sciences, Metabolism and Neurosciences, NOCSE HospitalUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.UCL Institute of Child HealthLondonUK
  4. 4.Department of Neurological SciencesUniversity of Rome “La Sapienza”RomeItaly
  5. 5.MRI UnitNational Society for EpilepsyBuckinghamshireUK

Personalised recommendations