Brain Topography

, Volume 27, Issue 1, pp 149–157 | Cite as

The Effects of Neurofeedback on Oscillatory Processes Related to Tinnitus

  • Thomas HartmannEmail author
  • Isabel Lorenz
  • Nadia Müller
  • Berthold Langguth
  • Nathan Weisz
Original Paper


Although widely used, no proof exists for the feasibility of neurofeedback for reinstating the disordered excitatory–inhibitory balance, marked by a decrease in auditory alpha power, in tinnitus patients. The current study scrutinizes the ability of neurofeedback to focally increase alpha power in auditory areas in comparison to the more common rTMS. Resting-state MEG was measured before and after neurofeedback (n = 8) and rTMS (n = 9) intervention respectively. Source level power and functional connectivity were analyzed with a focus on the alpha band. Only neurofeedback produced a significant decrease in tinnitus symptoms and—more important for the context of the study—a spatially circumscribed increase in alpha power in right auditory regions. Connectivity analysis revealed higher outgoing connectivity in a region ultimately neighboring the area in which power increases were observed. Neurofeedback decreases tinnitus symptoms and increases alpha power in a spatially circumscribed manner. In addition, compared to a more established brain stimulation-based intervention, neurofeedback is a promising approach to renormalize the excitatory–inhibitory imbalance putatively underlying tinnitus. This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback.


Tinnitus Neurofeedback rTMS MEG Auditory alpha Tau rhythm 



The authors wish to thank Daria Laptinskaya, Gabriela Salagean, Hadas Gorodetzky, Sylvie Roth and Christiane Wolf for their help in acquiring the data and Ken Gildner for language editing. This study was supported by the Tinnitus Research Initiative (Grant No: TE 06 02), the Deutsche Forschungsgemeinschaft (Grant No: WE 4156/2-1) and the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (Grant No: 33-7532.20/627).


  1. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi: 10.1038/nrn2575 PubMedCrossRefGoogle Scholar
  2. Cardoso JF, Souloumiac A (1993) Blind beamforming for non-Gaussian signals. Radar and Signal Processing, IEE Proceedings F. IET, pp 362–370Google Scholar
  3. Crocetti A, Forti S (2011) Neurofeedback for subjective tinnitus patients. Auris Nasus Larynx 38:735–738. doi: 10.1016/j.anl.2011.02.003 PubMedCrossRefGoogle Scholar
  4. Dohrmann K, Elbert T, Schlee W, Weisz N (2007a) Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci 25:371–378. doi: 17943012 PubMedGoogle Scholar
  5. Dohrmann K, Weisz N, Schlee W et al (2007b) Neurofeedback for treating tinnitus. Prog Brain Res 166:473–485PubMedCrossRefGoogle Scholar
  6. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682. doi: 10.1016/j.tins.2004.08.010 PubMedCrossRefGoogle Scholar
  7. Folmer RL, Carroll JR, Rahim A et al (2006) Effects of repetitive transcranial magnetic stimulation (rTMS) on chronic tinnitus. Acta Otolaryngol 126:96–101. doi: 10.1080/03655230600895465 CrossRefGoogle Scholar
  8. Goebel G, Hiller W (1994) The tinnitus questionnaire: a standard instrument for grading the degree of tinnitus—results of a multicenter study with the tinnitus questionnaire. HNO 42:166–172PubMedGoogle Scholar
  9. Haegens S, Nácher V, Luna R et al (2011) α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1117190108 Google Scholar
  10. Hanslmayr S, Aslan A, Staudigl T et al (2007) Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37:1465–1473. doi: 10.1016/j.neuroimage.2007.07.011 PubMedCrossRefGoogle Scholar
  11. Hartmann T, Schulz H, Weisz N (2011) Probing of brain states in real-time: introducing the ConSole environment. Front Psychol. doi: 10.3389/fpsyg.2011.00036 Google Scholar
  12. Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin North Am 36:239–248. doi: 10.1016/S0030-6665(02)00160-3 PubMedCrossRefGoogle Scholar
  13. Huang M, Mosher JC, Leahy R (1999) A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys Med Biol 44:423PubMedCrossRefGoogle Scholar
  14. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front hum neurosci 4:8CrossRefGoogle Scholar
  15. Khedr E, Rothwell J, El-Atar A (2009) One-year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. Eur J Neurol 16:404–408. doi: 10.1111/j.1468-1331.2008.02522.x PubMedCrossRefGoogle Scholar
  16. Kleinjung T, Steffens T, Londero A, Langguth B (2007) Transcranial magnetic stimulation (TMS) for treatment of chronic tinnitus: clinical effects. Prog Brain Res 166:359–367. doi: 10.1016/S0079-6123(07)66034-8 PubMedCrossRefGoogle Scholar
  17. Langguth B, Hajak G, Kleinjung T et al (2006) Repetitive transcranial magnetic stimulation and chronic tinnitus. Acta Otolaryngol 126:102–104. doi: 10.1080/03655230600895457 CrossRefGoogle Scholar
  18. Langguth B, Landgrebe M, Frank E, et al. (2012) Efficacy of different protocols of transcranial magnetic stimulation for the treatment of tinnitus: pooled analysis of two randomized controlled studies. World j biol psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 1–10. doi: 10.3109/15622975.2012.708438
  19. Lecrubier Y, Sheehan D, Weiller E et al (1997) The mini international neuropsychiatric interview (MINI): a short diagnostic structured interview—reliability and validity according to the CIDI. Eur Psychiatry 12:224–231. doi: 10.1016/S0924-9338(97)83296-8 CrossRefGoogle Scholar
  20. Lehtelä L, Salmelin R, Hari R (1997) Evidence for reactive magnetic 10 Hz rhythm in the human auditory cortex. Neurosci Lett 222:111–114. doi: 10.1016/S0304-3940(97)13361-4 PubMedCrossRefGoogle Scholar
  21. Lorenz I, Müller N, Schlee W et al (2009) Loss of alpha power is related to increased gamma synchronization-A marker of reduced inhibition in tinnitus? Neurosci Lett 453:225–228. doi: 10.1016/j.neulet.2009.02.028 PubMedCrossRefGoogle Scholar
  22. Lorenz I, Müller N, Schlee W et al (2010) Short-term effects of single repetitive TMS sessions on auditory evoked activity in patients with chronic tinnitus. J Neurophysiol 104:1497. doi: 10.1152/jn.00370.2010.Short-Term PubMedCrossRefGoogle Scholar
  23. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164:177–190. doi: 10.1016/j.jneumeth.2007.03.024 PubMedCrossRefGoogle Scholar
  24. Meng Z, Liu S, Zheng Y, Phillips J (2011) Repetitive transcranial magnetic stimulation for tinnitus. Cochrane Database of Syst Rev. doi: 10.1002/14651858.CD007946.pub2 Google Scholar
  25. Mimura K, Sato K, Ozaki T et al (1962) On the physiological significance of the EEG changes caused by sonic stimulation. Electroencephalogr Clin Neurophysiol 14:683CrossRefGoogle Scholar
  26. Min B-K, Herrmann CS (2007) Prestimulus EEG alpha activity reflects prestimulus top-down processing. Neurosci Lett 422:131–135. doi: S0304-3940(07)00701-X PubMedCrossRefGoogle Scholar
  27. Müller N, Weisz N (2011) Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds. Cereb Cortex. doi: 10.1093/cercor/bhr232 Google Scholar
  28. Müller N, Lorenz I, Langguth B, Weisz N (2013) rTMS induced tinnitus relief is related to an increase in auditory cortical alpha activity. PLoS ONE 8:e55557. doi: 10.1371/journal.pone.0055557 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Nolte G, Müller K-R (2010) Localizing and estimating causal relations of interacting brain rhythms. Front hum neurosci 4:209. doi: 10.3389/fnhum.2010.00209 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Nolte G, Ziehe A, Nikulin V et al (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100:1–4. doi: 10.1103/PhysRevLett.100.234101 CrossRefGoogle Scholar
  31. Noreña AJ, Micheyl C, Chéry-Croze S, Collet L (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7:358–369. doi: 10.1159/000066156 PubMedCrossRefGoogle Scholar
  32. Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9. doi: 10.1155/2011/156869 CrossRefGoogle Scholar
  33. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187PubMedCrossRefGoogle Scholar
  34. Pfurtscheller G, Stancák A Jr, Neuper C (1996) Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int j psychophysiol 24:39–46PubMedCrossRefGoogle Scholar
  35. Plewnia C (2010) Brain stimulation: new vistas for the exploration and treatment of tinnitus. CNS Neurosci Ther 00:1–13. doi: 10.1111/j.1755-5949.2010.00169.x Google Scholar
  36. Romei V, Brodbeck V, Michel C et al (2008a) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb cortex 18(9):2010–2018. doi: 10.1093/cercor/bhm229 PubMedCrossRefGoogle Scholar
  37. Romei V, Rihs T, Brodbeck V, Thut G (2008b) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. NeuroReport 19:203–208. doi: 10.1097/WNR.0b013e3282f454c4 PubMedCrossRefGoogle Scholar
  38. Schlee W, Müller N, Hartmann T et al (2009) Mapping cortical hubs in tinnitus. BMC Biol 7:80. doi: 10.1186/1741-7007-7-80 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Thut G, Veniero D, Romei V et al (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21:1176–1185. doi: 10.1016/j.cub.2011.05.049 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Van Veen B, Van Drongelen W (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEE Trans Biomed Eng 44(9):867–880CrossRefGoogle Scholar
  41. Vanneste S, Focquaert F, Van de Heyning P (2011) Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res 210:217–227. doi: 10.1007/s00221-011-2617-z PubMedCrossRefGoogle Scholar
  42. Weisz N, Moratti S, Meinzer M et al (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Medicine 2:e153. doi: 10.1371/journal.pmed.0020153 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Weisz N, Dohrmann K, Elbert T (2007a) The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res 166:61–70. doi: 10.1016/S0079-6123(07)66006-3 PubMedCrossRefGoogle Scholar
  44. Weisz N, Müller S, Schlee W et al (2007b) The neural code of auditory phantom perception. J Neurosci 27:1479. doi: 10.1523/JNEUROSCI.3711-06.2007 PubMedCrossRefGoogle Scholar
  45. Weisz N, Hartmann T, Müller N, Obleser J (2011) Alpha rhythms in audition: cognitive and clinical perspectives. Front Psychol. doi: 10.3389/fpsyg.2011.00073 Google Scholar
  46. Zoefel B, Huster RJ, Herrmann CS (2011) Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54:1427–1431. doi: 10.1016/j.neuroimage.2010.08.078 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thomas Hartmann
    • 1
    Email author
  • Isabel Lorenz
    • 2
  • Nadia Müller
    • 1
  • Berthold Langguth
    • 3
  • Nathan Weisz
    • 1
  1. 1.CIMeC, Center for Mind/Brain Sciences, Università degli Studi di TrentoTrentoItaly
  2. 2.Department of PsychologyUniversität KonstanzConstanceGermany
  3. 3.Department of PsychiatryUniversität RegensburgRegensburgGermany

Personalised recommendations