Brain Topography

, Volume 27, Issue 1, pp 4–11 | Cite as

Direct Brain Control and Communication in Paralysis

  • Niels Birbaumer
  • Guillermo Gallegos-Ayala
  • Moritz Wildgruber
  • Stefano Silvoni
  • Surjo R. Soekadar


Despite considerable growth in the field of brain-computer or brain-machine interface (BCI/BMI) research reflected in several hundred publications each year, little progress was made to enable patients in complete locked-in state (CLIS) to reliably communicate using their brain activity. Independent of the invasiveness of the BCI systems tested, no sustained direct brain control and communication was demonstrated in a patient in CLIS so far. This suggested a more fundamental theoretical problem of learning and attention in brain communication with BCI/BMI, formulated in the extinction-of-thought hypothesis. While operant conditioning and goal-directed thinking seems impaired in complete paralysis, classical conditioning of brain responses might represent the only alternative. First experimental studies in CLIS using semantic conditioning support this assumption. Evidence that quality-of-life in locked-in-state is not as limited and poor as generally believed draise doubts that “patient wills” or “advanced directives”signed long-before the locked-in-state are useful. On the contrary, they might be used as an excuse to shorten anticipated long periods of care for these patients avoiding associated financial and social burdens. Current state and availability of BCI/BMI systems urge a broader societal discourse on the pressing ethical challenges associated with the advancements in neurotechnology and BCI/BMI research.


Brain-computer interface Complete locked-in state Paralysis Patient will 



This work was supported by the German Federal Ministry of Education and Research (BMBF, Förderzeichen 01GQ0831, 16SV5840), the National Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) of Ecuador, the Deutsche Forschungsgemeinschaft (DFG) and the European Union (FP7-ICT-2011-288551).


  1. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. Birbaumer N (2006) Breaking the silence: brain-computer-interfaces (BCI) for communication and motor control. Psychophysiology 43:517–532PubMedCrossRefGoogle Scholar
  3. Birbaumer N, Cohen L (2007) Brain-computer-interfaces (BCI): communication and restoration of movement in paralysis. J Physiol 579(3):621–636PubMedCrossRefGoogle Scholar
  4. Birbaumer N, Elbert T, Rockstroh B, Lutzenberger W (1986) Biofeedback of slow corticalpotentials in attentional disorders. In: McCallum WC, Zappoli R, Denoth F (eds) Cerebral psychophysiology: studies in event-related potentials. Elsevier, Amsterdam, p 248Google Scholar
  5. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298PubMedCrossRefGoogle Scholar
  6. Birbaumer N, Ramos Murguialday A, Cohen L (2008) Brain-computer-interface (BCI) in paralysis. Curr Opin Neurol 21:634–638PubMedCrossRefGoogle Scholar
  7. Birbaumer N, Piccione F, Silvoni S, Wildgruber M (2012) Ideomotor silence: the case of complete paralysis and brain-computer interfaces (BCI). Psychol Res 76:183–191PubMedCrossRefGoogle Scholar
  8. Blankertz B, Müller K-R, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlögl A et al (2004) The BCI Competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51:1044–1051PubMedCrossRefGoogle Scholar
  9. Caria A, Sitaram R, Birbaumer N (2012) Real-time fMRI: a tool for local brain regulation. Neuroscientist 18(5):487–501PubMedCrossRefGoogle Scholar
  10. Clausen J (2008) Moving minds: ethical aspects of neural motor prostheses. Biotechnol J 3:1493–1501PubMedCrossRefGoogle Scholar
  11. Clausen J (2009) Man, machine and in between. Nature 457:1080–1081PubMedCrossRefGoogle Scholar
  12. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2012) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564PubMedCrossRefGoogle Scholar
  13. De Massari D, Matuz T, Furdea A, Ruf CA, Halder S, Birbaumer N (2013) Brain-computer interface and classical conditioning of communication in paralysis. Biol Psychol 92:267–274PubMedCrossRefGoogle Scholar
  14. Dworkin BR (1993) Learning and physiological regulation. University of Chicago Press, ChicagoGoogle Scholar
  15. Dworkin BR, Miller NE (1986) Failure to replicate visceral learning in the acute curarized rat preparation. Behav Neurosci 100:299–314PubMedCrossRefGoogle Scholar
  16. Furdea A, Ruf C, Halder S, De Massari D, Bogdan M, Rosenstiel W, Matuz T, Birbaumer N (2012) A new (semantic) reflexive brain-computer interface: in search for a suitable classifier. J Neurosci Methods 203:233–240PubMedCrossRefGoogle Scholar
  17. Haggard P, Clark S, Kalogeras J (2002) Voluntary action and conscious awareness. Nat Neurosci 5(4):382–385PubMedCrossRefGoogle Scholar
  18. Hinterberger T, Kübler A, Kaiser J, Neumann N, Birbaumer N (2003) A brain-computer-interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Clin Neurophysiol 114:416–425PubMedCrossRefGoogle Scholar
  19. Hinterberger T, Widmann G, Lal TN, Hill J, Tangermann M, Rosenstiel W, Schölkopf B, Elger C, Birbaumer N (2008) Voluntary brain regulation and communication with electrocorticogram signals. Epilepsy Behav 13:300–306PubMedCrossRefGoogle Scholar
  20. Hochberg LR, Serruya MD, Friehs GM et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegio. Nature 442:164–171PubMedCrossRefGoogle Scholar
  21. Hochberg LR, Bacher D, Jarosiewicz B et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jackson A, Mavoori J, Fetz E (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60PubMedCrossRefGoogle Scholar
  23. Kübler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119:2658–2666PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kübler A, Winter S, Ludolph AC, Hautzinger M, Birbaumer N (2005) Severity of depressive symptoms and quality of life in patients with amyotrophic lateral sclerosis. Neurorehabil Neural Repair 19(3):182–193PubMedCrossRefGoogle Scholar
  25. Kübler A, Weber C, Birbaumer N (2006) Locked-in-freigegeben für den tod? Wenn nur denken und fühlen bleiben—neuroethik des eingeschlossenseins. Zeitschrift fürmedizinische Ethik 52(1):57–70Google Scholar
  26. Lang P, Bradley M, Cuthbert B (1999) International affective picture system. The Center for Research in Psychophysiology. University of Florida, GainesvilleGoogle Scholar
  27. Leuthardt EC, Schalk B, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1(2):63–71PubMedCrossRefGoogle Scholar
  28. Linden DE, Habes I, Johnston SJ, Tatineni R, Subramanian L, Sorger B, Healy D, Goebel R (2012) Real-time self-regulation of emotion networks in patients with depression. PLoSOne 7(6):e38115. doi: 0.1371/journal.pone.0038115 CrossRefGoogle Scholar
  29. Lulé D, Häcker S, Ludolph A, Birbaumer N, Kübler A (2008) Depression und lebensqualität bei patienten mit amyotropher lateralsklerose. Deutsches Ärzteblatt 105(23):397–403Google Scholar
  30. Lulé D, Zickler C, Bruno MA, Demertzi A, Pellas F, Laureys S, Kübler A (2009) Life can be worth living in locked-in syndrome. Prog Brain Res 177:339–351PubMedCrossRefGoogle Scholar
  31. Lulé D, Pauli S, Altintas E, Singer U, Merk T, Uttner I, Birbaumer N, Ludolph A (2012) Emotional adjustment in amyotrophic lateral sclerosis (ALS). J Neurol 259:334–341PubMedCrossRefGoogle Scholar
  32. Matuz T, Birbaumer N, Hautzinger M, Kübler A (2010) Coping with amyotrophic lateral sclerosis: an integrative view. J Neurol Neurosurg Psychiatry 81:893–898PubMedCrossRefGoogle Scholar
  33. Miller NE (1969) Learning of visceral and glandular responses. Science 163:434–445PubMedCrossRefGoogle Scholar
  34. Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, Tshibanda L, Owen AM, Laureys S (2010) Willful modulation of brain activity in disorders of consciousness. N Engl J Med 362(7):579–589PubMedCrossRefGoogle Scholar
  35. Naito M, Michioka Y, Ozawa K et al (2007) A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf& Syst E90-D:1028–1037CrossRefGoogle Scholar
  36. Neumann N, Kotchoubey B (2004) Assessment of cognitive functions in severely paralysed and severely brain-damaged patients: neuropsychological and electrophysiological techniques. Brain Res Protoc 14:25–36CrossRefGoogle Scholar
  37. Nicolelis MA (2012) Mind in motion. Sci Am 307(3):58–63PubMedCrossRefGoogle Scholar
  38. Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A (2008) An auditory brain-computer-interface (BCI). J Neurosci Methods 167:43–50PubMedCrossRefGoogle Scholar
  39. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402. doi: 10.1126/science.1130197 PubMedCrossRefGoogle Scholar
  40. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2007) Using functional magnetic resonance imaging to detect covert awareness in the vegetative state. Arch Neurol 64(8):1098–1102PubMedCrossRefGoogle Scholar
  41. Pantke K-H, Birbaumer N (2012) Die lebensqualität schwerstbetroffener nach einem schlaganfall mit locked-in syndrom. Logos Interdisziplinär 20(4):296–300Google Scholar
  42. Perelmouter J, Birbaumer N (2000) A binary spelling interface with random errors. IEEE Trans Rehabil Eng 8(2):227–232PubMedCrossRefGoogle Scholar
  43. Ramos Murguialday A, Hill J, Bensch M, Martens S, Halder S, Nijboer F, Schoelkopf B, Birbaumer N, Gharabaghi A (2011) Transition from the locked into the completely locked-in state: a physiological analysis. Clin Neurophysiol 122:925–933PubMedCrossRefGoogle Scholar
  44. Razran G (1961) The observable unconscious and the inferable conscious in current soviet psychophysiology: interoceptive conditioning, semantic conditioning, and the orienting reflex. Psychol Rev 68:1–147PubMedCrossRefGoogle Scholar
  45. Ruf C, De Massari D, Wagner-Podmaniczky F, Matuz T, Birbaumer N. (2013) Semantic conditioning of salivary pH for communication. Special Issues, Artificial Int. & Medicine (in press)Google Scholar
  46. Ruiz S, Lee S, Soekadar S, Caria A, Veit R, Kircher T, Birbaumer N, Sitaram R (2012) Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp 34(1):200–212. doi: 10.1002/hbm.21427 [Epub ahead of print]CrossRefGoogle Scholar
  47. Seifert AR, Lubar JF (1975) Reduction of epileptic seizures through EEG biofeedback training. Biol Psychol 3:157–184PubMedCrossRefGoogle Scholar
  48. Silvoni S, Cavinato M, Volpato C, Ruf C, Birbaumer N, Piccione F (2013) Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication. Amyotroph Lateral Scler Frontotemporal Degener (in press)Google Scholar
  49. Soekadar SR, Witkowski M, Mellinger J, Ramos A, Birbaumer N, Cohen LG (2011) ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE Trans Neural Syst Rehabil Eng 19:542–549PubMedCrossRefGoogle Scholar
  50. Sorger B, Reithler J, Dahmen B, Goebel R (2012) A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol 22(14):1333–1338PubMedCrossRefGoogle Scholar
  51. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101PubMedCrossRefGoogle Scholar
  52. Vidal JJ (1973) Toward direct brain-computer communication. Annu Rev Biophys Bioeng 2:157–180PubMedCrossRefGoogle Scholar
  53. Vlek RJ, Steines D, Szibbo D, Kübler A, Schneider MJ, Haselager P, Nijboer F (2012) Ethical issues in brain-computer interface research, development, and dissemination. J Neurol Phys Ther 36:94–99PubMedCrossRefGoogle Scholar
  54. Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C (2008) Hand movement direction decoded from MEG and EEG. J Neurosc 28(4):1000–1008CrossRefGoogle Scholar
  55. Wilhelm B, Jordan M, Birbaumer N (2006) Communication in locked-in syndrome: effects of imagery on salivary pH. Neurology 67:534–535PubMedCrossRefGoogle Scholar
  56. Wolpaw J, Wolpaw E (2012) Brain-computer interfaces: principles and practice. Oxford University Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Niels Birbaumer
    • 1
    • 2
  • Guillermo Gallegos-Ayala
    • 1
    • 3
    • 4
  • Moritz Wildgruber
    • 5
  • Stefano Silvoni
    • 2
  • Surjo R. Soekadar
    • 1
    • 6
  1. 1.Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TübingenTübingenGermany
  2. 2.Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)VeneziaItaly
  3. 3.Graduate School of Neural Information Processing, International Max Planck Research SchoolTübingenGermany
  4. 4.Escuela Superior Politécnica del Litoral (ESPOL)GuayaquilEcuador
  5. 5.Institut für RadiologieKlinikum Rechts der IsarMunichGermany
  6. 6.Applied Neurotechnology Lab, Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany

Personalised recommendations