Brain Topography

, Volume 26, Issue 3, pp 397–409 | Cite as

On the Quantization of Time-Varying Phase Synchrony Patterns into Distinct Functional Connectivity Microstates (FCμstates) in a Multi-trial Visual ERP Paradigm

  • S. I. DimitriadisEmail author
  • N. A. Laskaris
  • A. Tzelepi
Original Paper


The analysis of functional brain connectivity has been supported by various techniques encompassing spatiotemporal interactions between distinct areas and enabling the description of network organization. Different brain states are known to be associated with specific connectivity patterns. We introduce here the concept of functional connectivity microstates (FCμstates) as short lasting connectivity patterns resulting from the discretization of temporal variations in connectivity and mediating a parsimonious representation of coordinated activity in the brain. Modifying a well-established framework for mining brain dynamics, we show that a small sized repertoire of FCμstates can be derived so as to encapsulate both the inter-subject and inter-trial response variability and further provide novel insights into cognition. The main practical advantage of our approach lies in the fact that time-varying connectivity analysis can be simplified significantly by considering each FCμstate as prototypical connectivity pattern, and this is achieved without sacrificing the temporal aspects of dynamics. Multi-trial datasets from a visual ERP experiment were employed so as to provide a proof of concept, while phase synchrony was emphasized in the description of connectivity structure. The power of FCμstates in knowledge discovery is demonstrated through the application of network topology descriptors. Their time-evolution and association with event-related responses is explored.


Mining brain dynamics Functional connectomics Microstates Symbolic dynamics 

Supplementary material

10548_2013_276_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3228 kb)


  1. Astolfi L, Cincotti F, Mattia D, Fallani VV, Tocci A, Colosimo A, Salinari S, Marciani MG, Hesse W, Witte H, Ursino M, Zavaglia M, Babiloni F (2008) Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans Biomed Eng 55:902–913PubMedCrossRefGoogle Scholar
  2. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci 108(18):7641–7646PubMedCrossRefGoogle Scholar
  3. Bezdec JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New YorkCrossRefGoogle Scholar
  4. Breakspear M, Williams LM, Stam CJ (2004) A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘dynamic cell assemblies’. J Comput Neurosci 16:49–68PubMedCrossRefGoogle Scholar
  5. Britz J, Landis T, Michel CM (2009) Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex 19:55–65PubMedCrossRefGoogle Scholar
  6. Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170PubMedCrossRefGoogle Scholar
  7. Buschman TJ, Miller EK (2007) Top‐down versus bottom‐up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862PubMedCrossRefGoogle Scholar
  8. Cabeza R, Nyberg L (2000) Imaging cognition. II. An empirical review of 275 PET and fMRI studies. J Cogn Neurosci (Review) 12:1–47CrossRefGoogle Scholar
  9. Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009) Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback. J Neurosci 29:7591–7598PubMedCrossRefGoogle Scholar
  10. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21PubMedCrossRefGoogle Scholar
  11. DeVico Fallani V, Latora V, Astolfi L, Cincotti F, Mattia D, Marciani MG et al (2007) Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. J Phys A Math Theor 41:224014CrossRefGoogle Scholar
  12. Dimitriadis SI, Laskaris NA, Del Rio-Portilla Y, Koudounis GC (2009) Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr 22(2):119–133PubMedCrossRefGoogle Scholar
  13. Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S, Fotopoulos S (2010) Tracking brain dynamics via time-dependent network analysis. J Neurosci Methods 193(1):145–155PubMedCrossRefGoogle Scholar
  14. Dimitriadis SI, Laskaris NA, Tsirka V, Erimaki S, Vourkas M, Micheloyannis S, Fotopoulos S (2012a) A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cogn Neurodyn 6(1):107–113PubMedCrossRefGoogle Scholar
  15. Dimitriadis SI, Laskaris NA, Tzelepi A, Economou G (2012b) Analyzing functional brain connectivity by means of commute times: a new approach and its application to track event-related dynamics. IEEE Trans Biomed Eng 59(5):1302–1309PubMedCrossRefGoogle Scholar
  16. Dimitriadis SI, Kanatsouli K, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S (2012c) Surface EEG shows that functional segregation via phase coupling contributes to the neural substrate of mental calculations. Brain Cogn 80(1):45–52PubMedCrossRefGoogle Scholar
  17. Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S (2012d) An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dynamics Psychol Life Sci 16(1):5–22PubMedGoogle Scholar
  18. Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199PubMedCrossRefGoogle Scholar
  19. Freeman WJ, Burke BC, Homes MD (2003) Aperiodic phase-resetting in scalp EEG of beta-gamma-oscillations by state transitions at alpha-theta-rates. Hum Brain Map 19:248–272CrossRefGoogle Scholar
  20. Freeman WJ (2004a) Origin, structure, and role of background EEG activity, Part 1: analytic amplitude. Clin Neurophysiol 115:2077–2088PubMedCrossRefGoogle Scholar
  21. Freeman WJ (2004b) Origin, structure, and role of background EEG activity, Part 2: analytic phase. Clin Neurophysiol 115:2089–2107PubMedCrossRefGoogle Scholar
  22. Freeman WJ (2005) Origin, structure, and role of background EEG activity, Part 3: neural frame classification. Clin Neurophysiol 116:1118–1129PubMedCrossRefGoogle Scholar
  23. Freeman WJ (2006) Origin, structure, and role of background EEG activity, Part 4: neural frame simulation. Clin Neurophysiol 117:572–589PubMedCrossRefGoogle Scholar
  24. Freeman WJ, Rogers LJ (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87:937–945PubMedGoogle Scholar
  25. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 1:1560–1563CrossRefGoogle Scholar
  26. Friston KJ (2000a) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 355:215–236PubMedCrossRefGoogle Scholar
  27. Friston KJ (2000b) The labile brain. II. Transients, complexity and selection. Philos Trans R Soc Lond B Biol Sci 355:237–252PubMedCrossRefGoogle Scholar
  28. Friston KJ (2000c) The labile brain. III. Transient and spatio-temporal receptive fields. Philos Trans R Soc Lond B Biol Sci 355:253–265PubMedCrossRefGoogle Scholar
  29. Hipp JF, Andreas KA, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69:387–396PubMedCrossRefGoogle Scholar
  30. Ioannides AA, Dimitriadis SI, Saridis G, Voultsidou M, Poghosyan V, Liu L, Laskaris NA (2012) Source space analysis of event-related dynamic reorganization of brain networks. Comput Math Methods Med 2012:452503Google Scholar
  31. Ito J, Nikolaev AR, van Cees L (2007) Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 25:904–913CrossRefGoogle Scholar
  32. Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85:2190–2212CrossRefGoogle Scholar
  33. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208PubMedCrossRefGoogle Scholar
  34. Laskaris NA, Ioannides AA (2002) Semantic geodesic maps: a unifying geometrical approach for studying the structure and dynamics of single trial evoked responses. Clin Neurophysiol 113(8):1209–1226PubMedCrossRefGoogle Scholar
  35. Laskaris N, Fotopoulos S, Ioannides AA (2004) Mining information from event related recordings. IEEE Signal Process Mag 21:66–77CrossRefGoogle Scholar
  36. Latora V, Marchiori M (2001) Efficient behaviour of small-world networks. Phys Rev Lett 87:198701PubMedCrossRefGoogle Scholar
  37. Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288PubMedCrossRefGoogle Scholar
  38. Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M (1998) Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 29:1–11PubMedCrossRefGoogle Scholar
  39. Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res Neuroimaging 138:141–156CrossRefGoogle Scholar
  40. Lehmann D, Pascual-Marqui RD, Strik WK, Koenig T (2010) Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. Neuroimage 49:1073–1079PubMedCrossRefGoogle Scholar
  41. Martinez T, Berkovich S, Schulten K (1993) Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4:558–569CrossRefGoogle Scholar
  42. McDowell JE, Kissler JM, Berg P, Dyckman KA, Gao Y, Rockstroh B et al (2005) Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades. Neuroreport 16:663–668PubMedCrossRefGoogle Scholar
  43. Meila M (2007) Comparing clusterings-an information based distance. J Multivar Anal 98:873–895CrossRefGoogle Scholar
  44. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052PubMedCrossRefGoogle Scholar
  45. Michel CM, Seeck M, Landis T (1999) Spatio-temporal dynamics of human cognition. News Physiol Sci 14:206–214PubMedGoogle Scholar
  46. Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ (2008) Frontal-midline theta from the perspective of hippocampal “theta”. Prog Neurobiol 86:156–185PubMedCrossRefGoogle Scholar
  47. Mohr C, Michel CM, Lantz G, Ortigue S, Viaud-Delmon I, Landis T (2005) Brain state-dependent functional hemispheric specialization in men but not in women. Cereb Cortex 15:1451–1458PubMedCrossRefGoogle Scholar
  48. Müller TJ, Koenig T, Wackermann J, Kalus P, Fallgatter A, Strik W, Lehmann D (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm 112:1435–1463Google Scholar
  49. Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G (2010) Spontaneous brain activity and EEG microstates. A novelEEG/fMRI analysis approach to explore resting-state networks. Neuroimage 52:1149–1161PubMedCrossRefGoogle Scholar
  50. Nakatani C, Ito J, Nikolaev AR, Gong PL, van Leeuwen C (2005) Phase synchronization analysis of EEG during attentional blink. J Cogn Neurosci 17:1969–1979PubMedCrossRefGoogle Scholar
  51. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582PubMedCrossRefGoogle Scholar
  52. Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Muller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 00(23):234101CrossRefGoogle Scholar
  53. Ossadtchi A, Greenblatt RE, Towle VL, Kohrman MH, Kamada K (2010) Inferring spatiotemporal network patterns from intracranial EEG data. Clin Neurophysiol 121:823–835PubMedCrossRefGoogle Scholar
  54. Pavan M, Pelillo M (2007) Dominant sets and pairwise clustering. IEEE Trans PAMI 29(1):167–172CrossRefGoogle Scholar
  55. Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nature 453:406–409PubMedCrossRefGoogle Scholar
  56. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013PubMedCrossRefGoogle Scholar
  57. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22:2917–2926PubMedCrossRefGoogle Scholar
  58. Schack B (2004) How to construct a microstate-based alphabet for evaluating information processing in time. Int J Bifurcat Chaos 14:793–814CrossRefGoogle Scholar
  59. Schlegel F, Lehmann D, Faber PL, Milz P, Gianotti LR (2012) EEG microstates during resting represent personality differences. Brain Topogr 25:20–26PubMedCrossRefGoogle Scholar
  60. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60:709–719PubMedCrossRefGoogle Scholar
  61. Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW (2003) Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum Brain Mapp 19:63–78PubMedCrossRefGoogle Scholar
  62. Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–847PubMedCrossRefGoogle Scholar
  63. Tzelepi A, Angevin RR, Amditis A (2008) In Proceedings of the 5th Intuition International Conference, Turin, ItalyGoogle Scholar
  64. Valencia M, Martinerie J, Dupont S, Chavez M (2008) Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys Rev E 77:050905(R)Google Scholar
  65. Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–18184PubMedCrossRefGoogle Scholar
  66. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRefGoogle Scholar
  67. Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long-range alpha/theta synchronization. Int J Psychophysiol 38:301–313CrossRefGoogle Scholar
  68. Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13:841–847CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. I. Dimitriadis
    • 1
    • 2
    Email author
  • N. A. Laskaris
    • 2
  • A. Tzelepi
    • 3
  1. 1.Electronics Laboratory, Department of PhysicsUniversity of PatrasPatrasGreece
  2. 2.Artificial Intelligence and Information Analysis Laboratory, Department of InformaticsAristotle UniversityThessalonikiGreece
  3. 3.Institute of Communication and Computer SystemsNational Technical University of AthensAthensGreece

Personalised recommendations