Brain Topography

, Volume 26, Issue 3, pp 479–487 | Cite as

Morphometric Correlation of Impulsivity in Medial Prefrontal Cortex

  • Sang Soo Cho
  • Giovanna Pellecchia
  • Kelly Aminian
  • Nicola Ray
  • Barbara Segura
  • Ignacio Obeso
  • Antonio P. Strafella
Original Paper

Abstract

Impulsivity is a complex behaviour composed of different domains encompassing behavioural dis-inhibition, risky decision-making and delay discounting abnormalities. To investigate regional brain correlates between levels of individual impulsivity and grey matter volume, we performed voxel-based morphometric correlation analysis in 34 young, healthy subjects using impulsivity scores measured with Barratt Impulsivity Scale-11 and computerized Kirby’s delay discounting task. The VBM analysis showed that impulsivity appears to be reliant on a network of cortical (medial prefrontal cortex and dorsolateral prefrontal cortex) and subcortical (ventral striatum) structures emphasizing the importance of brain networks associated with reward related decision-making in daily life as morphological biomarkers for impulsivity in a normal healthy population. While our results in healthy volunteers may not directly extend to pathological conditions, they provide an insight into the mechanisms of impulsive behaviour in patients with abnormalities in prefrontal/frontal-striatal connections, such as in drug abuse, pathological gambling, ADHD and Parkinson’s disease.

Keywords

Decision making Impulsivity Medial prefrontal cortex Ventral striatum Magnetic resonance imaging Voxel based morphometry 

Notes

Acknowledgments

This work was funded by the Canadian Institutes of Health Research to APS (MOP-110962). APS is supported by the Edmond J. Safra Philanthropic Foundation and the Canada Research Chair Program.

References

  1. Alessi SM, Petry NM (2003) Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Processes 64(3):345–354PubMedCrossRefGoogle Scholar
  2. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177PubMedCrossRefGoogle Scholar
  3. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851PubMedCrossRefGoogle Scholar
  4. Barkley RA, Edwards G, Laneri M, Fletcher K, Metevia L (2001) Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). J Abnorm Child Psychol 29(6):541–556PubMedCrossRefGoogle Scholar
  5. Baumgartner T, Knoch D, Hotz P, Eisenegger C, Fehr E (2011) Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nat Neurosci 14(11):1468–1474PubMedCrossRefGoogle Scholar
  6. Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci 8(11):1458–1463PubMedCrossRefGoogle Scholar
  7. Bechara A, Van Der Linden M (2005) Decision-making and impulse control after frontal lobe injuries. Curr Opin Neurol 18(6):734–739PubMedCrossRefGoogle Scholar
  8. Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19(13):5473–5481PubMedGoogle Scholar
  9. Bjork JM, Momenan R, Hommer DW (2009) Delay discounting correlates with proportional lateral frontal cortex volumes. Biol Psychiatry 65(8):710–713PubMedCrossRefGoogle Scholar
  10. Boes AD, Bechara A, Tranel D, Anderson SW, Richman L, Nopoulos P (2009) Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys. Soc Cogn Affect Neurosci 4(1):1–9PubMedCrossRefGoogle Scholar
  11. Brown SM, Manuck SB, Flory JD, Hariri AR (2006) Neural basis of individual differences in impulsivity: contributions of corticolimbic circuits for behavioral arousal and control. Emotion 6(2):239–245PubMedCrossRefGoogle Scholar
  12. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 99(1):523–528PubMedCrossRefGoogle Scholar
  13. Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371(2):179–207PubMedCrossRefGoogle Scholar
  14. Carmona S, Vilarroya O, Bielsa A, Trèmols V, Soliva JC, Rovira M, Tomàs J, Raheb C, Gispert JD, Batlle S, Bulbena A (2005) Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett 389(2):88–93PubMedCrossRefGoogle Scholar
  15. Cho SS, Strafella AP (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 4(8):e6725PubMedCrossRefGoogle Scholar
  16. Cho SS, Ko JH, Pellecchia G, Van Eimeren T, Cilia R, Strafella AP (2010) Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul 3(3):170–176PubMedCrossRefGoogle Scholar
  17. Cilia R, Siri C, Marotta G, Isaias IU, De Gaspari D, Canesi M, Pezzoli G, Antonini A (2008) Functional abnormalities underlying pathological gambling in Parkinson disease. Arch Neurol 65(12):1604–1611PubMedCrossRefGoogle Scholar
  18. Cilia R, Cho SS, van Eimeren T, Marotta G, Siri C, Ko JH, Pellecchia G, Pezzoli G, Antonini A, Strafella AP (2011) Pathological gambling in patients with Parkinson’s disease is associated with fronto-striatal disconnection: a path modeling analysis. Mov Disord 26(2):225–233PubMedCrossRefGoogle Scholar
  19. Cole MW, Schneider W (2007) The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37(1):343–360PubMedCrossRefGoogle Scholar
  20. Conway MA, Fthenaki A (2003) Disruption of inhibitory control of memory following lesions to the frontal and temporal lobes. Cortex 39(4–5):667–686PubMedCrossRefGoogle Scholar
  21. de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27(5):813–825PubMedCrossRefGoogle Scholar
  22. Dom G, De Wilde B, Hulstijn W, van den Brink W, Sabbe B (2006) Behavioural aspects of impulsivity in alcoholics with and without a cluster-B personality disorder. Alcohol Alcoholism 41(4):412–420CrossRefGoogle Scholar
  23. Elliott R, Friston KJ, Dolan RJ (2000) Dissociable neural responses in human reward systems. J Neurosci 20(16):6159–6165PubMedGoogle Scholar
  24. Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Theoret H, Boggio PS, Fregni F (2007) Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci 27(23):6212–6218PubMedCrossRefGoogle Scholar
  25. Ferry AT, Ongur D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425(3):447–470PubMedCrossRefGoogle Scholar
  26. Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421(2):172–188PubMedCrossRefGoogle Scholar
  27. Gilbert AM, Prasad K, Goradia D, Nutche J, Keshavan M, Frank E (2010) Grey matter volume reductions in the emotion network of patients with depression and coronary artery disease. Psychiatry Res 181(1):9–14PubMedCrossRefGoogle Scholar
  28. Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM (1996) Frontal lobe injuries, violence, and aggression: a report of the Vietnam head injury study. Neurology 46(5):1231–1238PubMedCrossRefGoogle Scholar
  29. Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB (2006) Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci 26(51):13213–13217PubMedCrossRefGoogle Scholar
  30. Kable JW, Glimcher PW (2007) The neural correlates of subjective value during intertemporal choice. Nat Neurosci 10(12):1625–1633PubMedCrossRefGoogle Scholar
  31. Kaladjian A, Jeanningros R, Azorin JM, Anton JL, Mazzola-Pomietto P (2011) Impulsivity and neural correlates of response inhibition in schizophrenia. Psychol Med 41(2):291–299PubMedCrossRefGoogle Scholar
  32. Kirby KN, Petry NM (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99(4):461–471PubMedCrossRefGoogle Scholar
  33. Kirby KN, Petry NM, Bickel WK (1999) Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J Exp Psychol Gen 128(1):78–87PubMedCrossRefGoogle Scholar
  34. Knoch D, Treyer V, Regard M, Muri RM, Buck A, Weber B (2006) Lateralized and frequency-dependent effects of prefrontal rTMS on regional cerebral blood flow. Neuroimage 31(2):641–648PubMedCrossRefGoogle Scholar
  35. Koch G, Oliveri M, Torriero S, Caltagirone C (2003) Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology 60(11):1844–1846PubMedCrossRefGoogle Scholar
  36. Koch G, Oliveri M, Torriero S, Carlesimo GA, Turriziani P, Caltagirone C (2005) rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory. Neuroimage 24(1):34–39PubMedCrossRefGoogle Scholar
  37. Kondo H, Saleem KS, Price JL (2003) Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465(4):499–523PubMedCrossRefGoogle Scholar
  38. Kondo H, Saleem KS, Price JL (2005) Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 493(4):479–509PubMedCrossRefGoogle Scholar
  39. Konrad K, Eickhoff SB (2010) Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp 31(6):904–916PubMedCrossRefGoogle Scholar
  40. Koprivová J, Horácek J, Tintera J, Prasko J, Raszka M, Ibrahim I, Höschl C (2009) Medial frontal and dorsal cortical morphometric abnormalities are related to obsessive-compulsive disorder. Neurosci Lett 464(1):62–66PubMedCrossRefGoogle Scholar
  41. Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evans AC (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31(3):993–1003PubMedCrossRefGoogle Scholar
  42. Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, Zhang T, Li X, Li D, Zou L, Tang H, Zhou XJ, Mechelli A, Collier DA, Sweeney JA, Li T, Gong Q (2009) Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiatry 166(2):196–205PubMedCrossRefGoogle Scholar
  43. MacDonald AW 3rd, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472):1835–1838PubMedCrossRefGoogle Scholar
  44. Mar AC, Walker ALJ, Theobald DE, Eagle DM, Robbins TW (2011) Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. J Neurosci 31(17):6398–6404PubMedCrossRefGoogle Scholar
  45. Matsuo K, Nicoletti M, Nemoto K, Hatch JP, Peluso MA, Nery FG, Soares JC (2009) A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 30(4):1188–1195PubMedCrossRefGoogle Scholar
  46. Mattfeld AT, Gluck MA, Stark CE (2011) Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learn Mem 18(11):703–711PubMedCrossRefGoogle Scholar
  47. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRefGoogle Scholar
  48. McAlonan GM, Cheung V, Cheung C, Chua SE, Murphy DGM, Suckling J, Tai K-S, Yip LKC, Leung P, Ho TP (2007) Mapping brain structure in attention deficit-hyperactivity disorder: a voxel-based MRI study of regional grey and white matter volume. Psychiatry Res 154(2):171–180PubMedCrossRefGoogle Scholar
  49. McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306(5695):503–507PubMedCrossRefGoogle Scholar
  50. Mitchell SH (1999) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology 146(4):455–464PubMedCrossRefGoogle Scholar
  51. Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158(11):1783–1793PubMedCrossRefGoogle Scholar
  52. Monterosso JR, Ainslie G, Xu J, Cordova X, Domier CP, London ED (2007) Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Hum Brain Mapp 28(5):383–393PubMedCrossRefGoogle Scholar
  53. Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C, McAndrews MP, Levine B, Black S, Winocur G, Nadel L (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207(1):35–66PubMedCrossRefGoogle Scholar
  54. Noonan MP, Walton ME, Behrens TE, Sallet J, Buckley MJ, Rushworth MF (2010) Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc Natl Acad Sci USA 107(47):20547–20552PubMedCrossRefGoogle Scholar
  55. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14(6):769–776PubMedCrossRefGoogle Scholar
  56. Ohnishi T, Matsuda H, Imabayashi E, Okabe S, Takano H, Arai N, Ugawa Y (2004) rCBF changes elicited by rTMS over DLPFC in humans. Suppl Clin Neurophysiol 57:715–720PubMedCrossRefGoogle Scholar
  57. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt Impulsiveness Scale. J Clin Psychol 51(6):768–774PubMedCrossRefGoogle Scholar
  58. Ploner CJ, Gaymard BM, Rivaud-Péchoux S, Baulac M, Clémenceau S, Samson S, Pierrot-Deseilligny C (2000) Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cereb Cortex 10(12):1211–1216PubMedCrossRefGoogle Scholar
  59. Reynolds B, Ortengren A, Richards JB, de Wit H (2006) Dimensions of impulsive behavior: personality and behavioral measures. Pers Indiv Differ 40(2):305–315CrossRefGoogle Scholar
  60. Richards JB, Zhang L, Mitchell SH, de Wit H (1999) Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav 71(2):121–143PubMedCrossRefGoogle Scholar
  61. Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55(1):11–29PubMedCrossRefGoogle Scholar
  62. Schwartz DL, Mitchell AD, Lahna DL, Luber HS, Huckans MS, Mitchell SH, Hoffman WF (2010) Global and local morphometric differences in recently abstinent methamphetamine-dependent individuals. Neuroimage 50(4):1392–1401PubMedCrossRefGoogle Scholar
  63. Soloff P, Nutche J, Goradia D, Diwadkar V (2008) Structural brain abnormalities in borderline personality disorder: a voxel-based morphometry study. Psychiatry Res 164(3):223–236PubMedCrossRefGoogle Scholar
  64. Spinella M (2007) Normative data and a short form of the Barratt Impulsiveness Scale. Int J Neurosci 117(3):359–368PubMedCrossRefGoogle Scholar
  65. Stuss DT, Gow CA, Hetherington CR (1992) “No longer Gage”: frontal lobe dysfunction and emotional changes. J Consult Clin Psychol 60(3):349–359PubMedCrossRefGoogle Scholar
  66. Swann AC, Bjork JM, Moeller FG, Dougherty DM (2002) Two models of impulsivity: relationship to personality traits and psychopathology. Biol Psychiatry 51(12):988–994PubMedCrossRefGoogle Scholar
  67. Talairach J, Tornoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Georg Thieme, StuttgartGoogle Scholar
  68. Turk DJ, Banfield JF, Walling BR, Heatherton TF, Grafton ST, Handy TC, Gazzaniga MS, Macrae CN (2004) From facial cue to dinner for two: the neural substrates of personal choice. Neuroimage 22(3):1281–1290PubMedCrossRefGoogle Scholar
  69. van’t Wout M, Kahn RS, Sanfey AG, Aleman A (2005) Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. NeuroReport 16(16):1849–1852CrossRefGoogle Scholar
  70. Völlm B, Richardson P, McKie S, Elliott R, Dolan M, Deakin B (2007) Neuronal correlates of reward and loss in Cluster B personality disorders: a functional magnetic resonance imaging study. Psychiatry Res 156(2):151–167PubMedCrossRefGoogle Scholar
  71. Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8(4):321–345PubMedCrossRefGoogle Scholar
  72. Worsley KJ, Chen JI, Lerch J, Evans AC (2005) Comparing functional connectivity via thresholding correlations and singular value decomposition. Philos Trans R Soc Lond B Biol Sci 360(1457):913–920PubMedCrossRefGoogle Scholar
  73. Xu L, Liang ZY, Wang K, Li S, Jiang T (2009) Neural mechanism of intertemporal choice: from discounting future gains to future losses. Brain Res 1261:65–74PubMedCrossRefGoogle Scholar
  74. Yu R (2012) Regional white matter volumes correlate with delay discounting. PLoS ONE 7(2):e32595PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sang Soo Cho
    • 1
    • 2
  • Giovanna Pellecchia
    • 1
    • 2
  • Kelly Aminian
    • 1
    • 2
  • Nicola Ray
    • 1
    • 2
  • Barbara Segura
    • 1
    • 2
  • Ignacio Obeso
    • 1
    • 2
  • Antonio P. Strafella
    • 1
    • 2
    • 3
  1. 1.Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, UHNUniversity of TorontoTorontoCanada
  2. 2.PET Imaging Centre, Centre for Addiction and Mental HealthUniversity of TorontoTorontoCanada
  3. 3.Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital and Institute, UHN, CAMH-PET Imaging CentreUniversity of TorontoTorontoCanada

Personalised recommendations