Advertisement

Brain Topography

, Volume 26, Issue 2, pp 338–354 | Cite as

Music Therapy Modulates Fronto-Temporal Activity in Rest-EEG in Depressed Clients

  • Jörg FachnerEmail author
  • Christian Gold
  • Jaakko Erkkilä
Original Paper

Abstract

Fronto-temporal areas process shared elements of speech and music. Improvisational psychodynamic music therapy (MT) utilizes verbal and musical reflection on emotions and images arising from clinical improvisation. Music listening is shifting frontal alpha asymmetries (FAA) in depression, and increases frontal midline theta (FMT). In a two-armed randomized controlled trial (RCT) with 79 depressed clients (with comorbid anxiety), we compared standard care (SC) versus MT added to SC at intake and after 3 months. We found that MT significantly reduced depression and anxiety symptoms. The purpose of this study is to test whether or not MT has an impact on anterior fronto-temporal resting state alpha and theta oscillations. Correlations between anterior EEG, Montgomery–Åsberg Depression Rating Scale (MADRS) and the Hospital Anxiety and Depression Scale—Anxiety Subscale (HADS-A), power spectral analysis (topography, means, asymmetry) and normative EEG database comparisons were explored. After 3 month of MT, lasting changes in resting EEG were observed, i.e., significant absolute power increases at left fronto-temporal alpha, but most distinct for theta (also at left fronto-central and right temporoparietal leads). MT differed to SC at F7–F8 (z scored FAA, p < .03) and T3–T4 (theta, p < .005) asymmetry scores, pointing towards decreased relative left-sided brain activity after MT; pre/post increased FMT and decreased HADS-A scores (r = .42, p < .05) indicate reduced anxiety after MT. Verbal reflection and improvising on emotions in MT may induce neural reorganization in fronto-temporal areas. Alpha and theta changes in fronto-temporal and temporoparietal areas indicate MT action and treatment effects on cortical activity in depression, suggesting an impact of MT on anxiety reduction.

Keywords

Music therapy Depression Anxiety Rest EEG Frontal alpha asymmetry Frontal theta Lateralization 

Abbreviations

APD

Absolute power differences

AS

Asymmetry score

BL

Baseline

EOG

Electrooculograpy

EMG

Electromyograpy

ECG

Electrocardiography

FAA

Frontal alpha asymmetry

FDA

Federal drug administration

FFT

Fast Fourier Transform

FMT

Frontal midline theta

HADS-A

Hospital Anxiety and Depression Rating Scale-Anxiety Subscale

IAF

Individual alpha frequency

ICD

International classification of diseases

MAOI

Monoamine oxidase inhibitors

MADRS

Montgomery–Åsberg Depression Rating Scale

MT

Improvisational psychodynamic music therapy

NASSA

Noradrenergic and specific serotonergic antidepressant

NG

NeuroGuide EEG analysis software

RCT

Randomized controlled trial

SC

Standard care

SSRI

Selective serotonin re-uptake inhibitors

SNRI

Serotonin and norepinephrine re-uptake Inhibitors

Notes

Acknowledgments

PhD Robert Thatcher for software solutions; Mr. Miika Leminen, M.Sci. for technical advise, Ms. Airi Kilpilainen, M. Sci. for EEG recording assistance, Dr. Gilbertson and Dr. Luck for language support and profs. Mari Tervaniemi and Tuomas Eerola for discussions and comments on a previous version of the manuscript. The research was funded by the NEST (New and Emerging Science and Technology) programme of the European Commission (project BrainTuning FP6-2004-NEST-PATH-028570) and the programme for Centres of Excellence (CoEs) in research, Academy of Finland.

Conflict of interest

There are no conflicting financial interests.

References

  1. Aftanas LI, Golocheikine SA (2001) Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett 310(1):57–60. doi: 10.1016/S0304-3940(01)02094-8 PubMedCrossRefGoogle Scholar
  2. Aftanas L, Reva N, Savotina L, Makhnev V (2006) Neurophysiological correlates of induced discrete emotions in humans: an individually oriented analysis. Neurosci Behav Physiol 36(2):119–130. doi: 10.1007/s11055-005-0170-6 PubMedCrossRefGoogle Scholar
  3. Aina Y, Susman JL (2006) Understanding comorbidity with depression and anxiety disorders. J Am Osteopath Assoc 106(5 Suppl 2):S9–S14PubMedGoogle Scholar
  4. Aldridge D (1996) Music therapy and research in medicine—from out of the silence. Jessica Kingsley Publishers, LondonGoogle Scholar
  5. Alhaj H, Wisniewski G, McAllister-Williams RH (2011) The use of the EEG in measuring therapeutic drug action: focus on depression and antidepressants. J Psychopharmacol 25(9):1175–1191. doi: 10.1177/0269881110388323 PubMedCrossRefGoogle Scholar
  6. Allen JJ, Iacono WG, Depue RA, Arbisi P (1993) Regional electroencephalographic asymmetries in bipolar seasonal affective disorder before and after exposure to bright light. Biol Psychiatry 33(8–9):642–646. doi: 10.1016/0006-3223(93)90104-L PubMedCrossRefGoogle Scholar
  7. Allen JJB, Coan JA, Nazarian M (2004) Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol Psychol 67(1–2):183–218. doi: 10.1016/j.biopsycho.2004.03.007 PubMedCrossRefGoogle Scholar
  8. Altenmuller E, Schurmann K, Lim VK, Parlitz D (2002) Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40(13):2242–2256. doi: 10.1016/S0028-3932(02)00107-0 PubMedCrossRefGoogle Scholar
  9. Altenmuller E, Marco-Pallares J, Munte TF, Schneider S (2009) Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann N Y Acad Sci 1169:395–405. doi: 10.1111/j.1749-6632.2009.04580.x PubMedCrossRefGoogle Scholar
  10. Andersen SB, Moore RA, Venables L, Corr PJ (2009) Electrophysiological correlates of anxious rumination. Int J Psychophysiol 71(2):156–169. doi: 10.1016/j.ijpsycho.2008.09.004 PubMedCrossRefGoogle Scholar
  11. Andrews PW, Thomson JA (2009) The bright side of being blue: depression as an adaptation for analyzing complex problems. Psychol Rev 116(3):620–654. doi: 10.1037/a0016242 PubMedCrossRefGoogle Scholar
  12. Aro P, Ronkainen T, Storskrubb T, Bolling-Sternevald E, Svärdsudd K, Talley N, Junghard O, Johansson S, Wiklund I, Agréus L (2004) Validation of the translation and cross-cultural adaptation into Finnish of the Abdominal Symptom Questionnaire, the Hospital Anxiety and Depression Scale and the Complaint Score Questionnaire. Scand J Gastroenterol 12:1201–1208. doi: 10.1080/00365520410008132 CrossRefGoogle Scholar
  13. Balconi M, Brambilla E, Falbo L (2009) BIS/BAS, cortical oscillations and coherence in response to emotional cues. Brain Res Bull 80(3):151–157. doi: 10.1016/j.brainresbull.2009.07.001 PubMedCrossRefGoogle Scholar
  14. Bjelland I, Dahl AA, Haug TT, Neckelmann D (2002) The validity of the Hospital Anxiety and Depression Scale: an updated literature review. J Psychosom Res 52(2):69–77. doi: 10.1016/S0022-3999(01)00296-3 PubMedCrossRefGoogle Scholar
  15. Blackhart GC, Minnix JA, Kline JP (2006) Can EEG asymmetry patterns predict future development of anxiety and depression?: a preliminary study. Biol Psychol 72(1):46–50. doi: 10.1016/j.biopsycho.2005.06.010 PubMedCrossRefGoogle Scholar
  16. Briere ME, Forest G, Chouinard S, Godbout R (2003) Evening and morning EEG differences between young men and women adults. Brain Cogn 53(2):145–148. doi: S0278262603000976 PubMedCrossRefGoogle Scholar
  17. Bruder GE, Fong R, Tenke CE, Leite P, Towey JP, Stewart JE, McGrath PJ, Quitkin FM (1997) Regional brain asymmetries in major depression with or without an anxiety disorder: a quantitative electroencephalographic study. Biol Psychiatry 41(9):939–948. doi: S0006-3223(96)00260-0 PubMedCrossRefGoogle Scholar
  18. Bruder GE, Stewart JW, Tenke CE, McGrath PJ, Leite P, Bhattacharya N, Quitkin FM (2001) Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry 49(5):416–425. doi: S0006322300010167 PubMedCrossRefGoogle Scholar
  19. Bruscia KE (1987) Improvisational models of music therapy. C.C. Thomas, SpringfieldGoogle Scholar
  20. Cook IA, Hunter AM, Korb A, Farahbod H, Leuchter AF (2009) EEG signals in psychiatry: biomarkers for depression management. In: Tong S, Thankor NV (eds) Quantitative EEG analysis methods and clinical application. Artech House Publishers Boston, pp 289–316Google Scholar
  21. Davidson RJ (1988) EEG measures of cerebral asymmetry: conceptual and methodological issues. Int J Neurosci 39(1–2):71–89PubMedCrossRefGoogle Scholar
  22. Davidson RJ (2004) What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol 67(1–2):219-233. doi: 10.1016/j.biopsycho.2004.03.008
  23. Davidson RJ, Schwartz GE (1977) The influence of musical training on patterns of EEG asymmetry during musical and non musical self generation tasks. Psychophysiology 14(1):58–63. doi: 10.1111/j.1469-8986.1977.tb01156.x
  24. Davidson RJ, Marshall JR, Tomarken AJ, Henriques JB (2000) While a phobic waits: regional brain electrical and autonomic activity in social phobics during anticipation of public speaking. Biol Psychiatry 47(2):85–95. doi: 10.1016/S0006-3223(99)00222-X
  25. Debener S, Beauducel A, Nessler D, Brocke B, Heilemann H, Kayser J (2000) Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients. Neuropsychobiology 41(1):31–37. doi: 10.1159/000026630 Google Scholar
  26. Doppelmayr M, Klimesch W, Pachinger T, Ripper B (1998) Individual differences in brain dynamics: important implications for the calculation of event-related band power. Biol Cybern 79(1):49–57PubMedCrossRefGoogle Scholar
  27. Duffy FH, Bartels PH, Burchfiel JL (1981) Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroen Clin Neurophysiol 51(5):455–462CrossRefGoogle Scholar
  28. Erkkilä J (2007) Improvisaatiopainotteisen musiikkiterapian kokemuspohjaisia sisältöjä. Musiikkiterapia 22:78–88Google Scholar
  29. Erkkila J, Gold C, Fachner J, Ala-Ruona E, Punkanen M, Vanhala M (2008) The effect of improvisational music therapy on the treatment of depression: protocol for a randomised controlled trial. BMC Psychiatry 8:50. doi: 1471-244X-8-50 PubMedCrossRefGoogle Scholar
  30. Erkkilä J, Punkanen M, Fachner J, Ala-Ruona E, Pöntiö I, Tervaniemi M, Vanhala M, Gold C (2011) Individual music therapy for depression—Randomised Controlled Trial. Br J Psychiatry 199(2):132–139. doi: 10.1192/bjp.bp.110.085431 PubMedCrossRefGoogle Scholar
  31. Erkkilä J, Ala-Ruona E, Punkanen M, Fachner J (2012) Perspectives on creativity in improvisational, psychodynamic music therapy. In: Hargreaves D, Miell D, MacDonald R (eds) Musical imaginations: multidisciplinary perspectives on creativity, performance and perception. Oxford University Press, Oxford, pp 414–428Google Scholar
  32. Fachner J, Gold C, Ala-Ruona E, Punkanen M, Erkkilä J (2010) Depression and music therapy treatment—clinical validity and reliability of EEG alpha asymmetry and frontal midline theta: three case studies. In: Demorest SM, Morrison SJ, Campbell PS (eds) Proceedings of the 11th international conference on music perception and cognition (CD-ROM). ICMPC. University of Washington, School of Music, Seattle, pp 11–18Google Scholar
  33. Field T, Martinez A, Nawrocki T, Pickens J, Fox NA, Schanberg S (1998) Music shifts frontal EEG in depressed adolescents. Adolescence 33(129):109–116PubMedGoogle Scholar
  34. Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6(2):78–84. doi: 10.1016/S1364-6613(00)01839-8 PubMedCrossRefGoogle Scholar
  35. Gold C, Fachner J, Erkkilä J (2012 submitted) Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depressionGoogle Scholar
  36. Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD (2009) EEG power spectra at early stages of depressive disorders. J Clin Neurophysiol 26(6):401–406. doi: 10.1097/WNP.0b013e3181c298fe PubMedCrossRefGoogle Scholar
  37. Gruzelier J (2009) A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn Process 10(Suppl 1):S101–S109. doi: 10.1007/s10339-008-0248-5 PubMedCrossRefGoogle Scholar
  38. Hagemann D (2004) Individual differences in anterior EEG asymmetry: methodological problems and solutions. Biol Psychol 67(1–2):157–182PubMedCrossRefGoogle Scholar
  39. Hagemann D, Naumann E, Thayer JF (2001) The quest for the EEG reference revisited: a glance from brain asymmetry research. Psychophysiology 38(5):847–857PubMedCrossRefGoogle Scholar
  40. Hall RCW (1995) Global assessment of functioning: a modified scale. Psychosomatics 36(3):267–275PubMedCrossRefGoogle Scholar
  41. Harmon-Jones E (2003) Early career award. Clarifying the emotive functions of asymmetrical frontal cortical activity. Psychophysiology 40(6):838–848PubMedCrossRefGoogle Scholar
  42. Heller W, Nitschke JB, Etienne MA, Miller GA (1997) Patterns of regional brain activity differentiate types of anxiety. J Abnorm Psychol 106(3):376–385. doi: 10.1037/0021-843X.106.3.376 PubMedCrossRefGoogle Scholar
  43. Henriques JB, Davidson RJ (1991) Left frontal hypoactivation in depression. J Abnorm Psychol 100(4):535–545. doi: 10.1037/0021-843X.100.4.535 PubMedCrossRefGoogle Scholar
  44. Herrmann C (1997) International experiences with the Hospital Anxiety and Depression Scale-A review of validation data and clinical results. J Psychosom Res 42(1):17–41PubMedCrossRefGoogle Scholar
  45. Hirshkowitz M, Earle J, Paley B (1978) EEG alpha asymmetry in musicians and non-musicians: a study of hemispheric specialization. Neuropsychologia 16(1):125–128. doi: 10.1016/0028-3932(78)90052-0 PubMedCrossRefGoogle Scholar
  46. Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11(2):190–208PubMedGoogle Scholar
  47. Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29(10):3019–3025. doi: 10.1523/JNEUROSCI.5118-08.2009 PubMedCrossRefGoogle Scholar
  48. Inanaga K (1998) Frontal midline theta rhythm and mental activity. Psychiatry Clin Neurosci 52(6):555–566. doi: 10.1046/j.1440-1819.1998.00452.x PubMedGoogle Scholar
  49. Ingram RE (2009) The international encyclopedia of depression. Springer, New YorkGoogle Scholar
  50. Jakobi UE (2009) A meta-analysis about EEG alpha asymmetries and depression in adults: proof of a vulnerability marker for depression. VDM Verlag Dr, MüllerGoogle Scholar
  51. John ER, Prichep LS, Easton P (1987) Normative data banks and neurometrics: basic concepts, method and results of norm constructions in method of analysis of brain electrical and magnetic signals. In: Gevins AS, Remond A (eds) EEG handbook (revised series), vol 1. Elsevier (Biomedical Division), New York, pp 449–495Google Scholar
  52. Jones NA, Field T (1999) Massage and music therapies attenuate frontal EEG asymmetry in depressed adolescents. Adolescence 34(135):529–534PubMedGoogle Scholar
  53. Joormann J, Gotlib IH (2010) Emotion regulation in depression: relation to cognitive inhibition. Cogn Emot 24(2):281–298. doi: 10.1080/02699930903407948 PubMedCrossRefGoogle Scholar
  54. Jungblut M (2009) SIPARI: A music therapy intervention for patients suffering with chronic, nonfluent aphasia. Music Med 1(2):102–105. doi: 10.1177/1943862109345130 CrossRefGoogle Scholar
  55. Kentgen LM, Tenke CE, Pine DS, Fong R, Klein RG, Bruder GE (2000) Electroencephalographic asymmetries in adolescents with major depression: influence of comorbidity with anxiety disorders. J Abnorm Psychol 109(4):797–802. doi: 10.1037/0021-843X.109.4.797 PubMedCrossRefGoogle Scholar
  56. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195PubMedCrossRefGoogle Scholar
  57. Klimesch W, Doppelmayr M, Russegger H, Pachinger T (1996) Theta band power in the human scalp EEG and the encoding of new information. NeuroReport 7(7):1235–1240PubMedCrossRefGoogle Scholar
  58. Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34(2):169–176PubMedCrossRefGoogle Scholar
  59. Kline JP, Allen S (2008) The failed repressor: EEG asymmetry as a moderator of the relation between defensiveness and depressive symptoms. Int J Psychophysiol 68(3):228–234. doi: 10.1016/j.ijpsycho.2008.02.002 PubMedCrossRefGoogle Scholar
  60. Koelsch S (2006) Significance of Broca’s Area and ventral premotor cortex for music-syntactic processing. Cortex 42(4):518–520. doi: 10.1016/s0010-9452(08)70390-3 PubMedCrossRefGoogle Scholar
  61. Koelsch S (2009) A neuroscientific perspective on music therapy. Ann N Y Acad Sci 1169:374–384. doi: 10.1111/j.1749-6632.2009.04592.x PubMedCrossRefGoogle Scholar
  62. Koelsch S, Kasper E, Sammler D, Schulze K, Gunter T, Friederici AD (2004) Music, language and meaning: brain signatures of semantic processing. Nat Neurosci 7(3):302–307. doi: 10.1038/nn1197 PubMedCrossRefGoogle Scholar
  63. Kolb B, Whishaw IQ (2003) Fundamentals of human neuropsychology. A series of books in psychology, 5th edn. Worth Publishers, New YorkGoogle Scholar
  64. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19(4):1463–1476. doi: S1053811903002866 PubMedCrossRefGoogle Scholar
  65. Lin YP, Duann JR, Chen JH, Jung TP (2010) Electroencephalographic dynamics of musical emotion perception revealed by independent spectral components. NeuroReport 21(6):410–415. doi: 10.1097/WNR.0b013e32833774de PubMedCrossRefGoogle Scholar
  66. Lindsley DE, Wicke JD (1974) The EEG: Autonomous electrical activity in man and animals. In: Patterson MN, Thompson R (eds) Bioelectrical recording techniques. Academic Press, New York, pp 3–83Google Scholar
  67. Lönnqvist J (2009) Stressi ja depressio (stress and depression). Kustannus Oy Duodecim. http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=seh00020. Accessed January 19 2009
  68. Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61(12):2030–2040. doi: 10.1111/j.1742-1241.2007.01602.x PubMedCrossRefGoogle Scholar
  69. Maratos A, Crawford MJ, Procter S (2011) Music therapy for depression: it seems to work, but how? Br J Psychiatry 199:92–93. doi: 10.1192/bjp.bp.110.087494 PubMedCrossRefGoogle Scholar
  70. Mathersul D, Williams LM, Hopkinson PJ, Kemp AH (2008) Investigating models of affect: relationships among EEG alpha asymmetry, depression, and anxiety. Emotion 8(4):560–572. doi: 10.1037/a0012811 PubMedCrossRefGoogle Scholar
  71. Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ (2008) Frontal-midline theta from the perspective of hippocampal “theta”. Prog Neurobiol 86(3):156–185. doi: S0301-0082(08)00100-7.10.1016/j.pneurobio.2008.09.005 PubMedCrossRefGoogle Scholar
  72. Mizuki Y, Suetsugi M, Imai T, Kai S, Kajimura N, Yamada M (1989) A physiological marker for assessing anxiety level in humans: frontal midline theta activity. Psychiatry Clin Neurosci 43(4):619–626. doi: 10.1111/j.1440-1819.1989.tb03096.x CrossRefGoogle Scholar
  73. Mizuki Y, Suetsugi M, Ushijima I, Yamada M (1997) Differential effects of dopaminergic drugs on anxiety and arousal in healthy volunteers with high and low anxiety. Prog Neuropsychopharmacol Biol Psychiatry 21(4):573–590. doi: 10.1016/s0278-5846(97)00033-x PubMedCrossRefGoogle Scholar
  74. Moffitt TE, Harrington H, Caspi A, Kim-Cohen J, Goldberg D, Gregory AM, Poulton R (2007) Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years. Arch Gen Psychiatry 64(6):651–660. doi: 10.1001/archpsyc.64.6.651 PubMedCrossRefGoogle Scholar
  75. Montgomery SA, Åsberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389. doi: 10.1192/bjp.134.4.382 PubMedCrossRefGoogle Scholar
  76. Nitschke JB, Heller W, Palmieri PA, Miller GA (1999) Contrasting patterns of brain activity in anxious apprehension and anxious arousal. Psychophysiology 36(5):628–637PubMedCrossRefGoogle Scholar
  77. Oakes TR, Pizzagalli DA, Hendrick AM, Horras KA, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Davidson RJ (2004) Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum Brain Mapp 21(4):257–270. doi: 10.1002/hbm.20004 PubMedCrossRefGoogle Scholar
  78. Omar R, Henley SM, Bartlett JW, Hailstone JC, Gordon E, Sauter DA, Frost C, Scott SK, Warren JD (2011) The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration. Neuroimage 56(3):1814–1821. doi: 10.1016/j.neuroimage.2011.03.002 PubMedCrossRefGoogle Scholar
  79. Park JR, Yagyu T, Saito N, Kinoshita T, Hirai T (2002) Dynamics of brain electric field during recall of Salpuri dance performance. Percept Mot Skills 95(3 Pt 1):955–962PubMedCrossRefGoogle Scholar
  80. Peterson CK, Harmon-Jones E (2009) Circadian and seasonal variability of resting frontal EEG asymmetry. Biol Psychol 80(3):315–320PubMedCrossRefGoogle Scholar
  81. Pizzagalli DA, Oakes TR, Davidson RJ (2003) Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology 40(6):939–949PubMedCrossRefGoogle Scholar
  82. Punkanen M, Eerola T, Erkkila J (2011) Biased emotional recognition in depression: perception of emotions in music by depressed patients. J Affect Disord 130(1–2):118–126. doi: 10.1016/j.jad.2010.10.034 PubMedCrossRefGoogle Scholar
  83. Rush AJ, First MB, Blacker D (2008) Handbook of psychiatric measures. American Psychiatric Association. Task force for the handbook of psychiatric measures, 2nd edn. American Psychiatric Pub, WashingtonGoogle Scholar
  84. Saletu B, Anderer P, Saletu-Zyhlarz GM (2010) EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression. Clin EEG Neurosci 41(4):203–210PubMedCrossRefGoogle Scholar
  85. Sammler D, Grigutsch M, Fritz T, Koelsch S (2007) Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2):293–304. doi: 10.1111/j.1469-8986.2007.00497.x PubMedCrossRefGoogle Scholar
  86. Sammler D, Koelsch S, Friederici AD (2011) Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing? Cortex 47(6):659–673. doi: 10.1016/j.cortex.2010.04.007 PubMedCrossRefGoogle Scholar
  87. Schacter DL (1977) EEG theta-waves and psychological phenomena: a review. Biol Psychol 5:47–82PubMedCrossRefGoogle Scholar
  88. Schlaug G (2009) Part VI introduction: listening to and making music facilitates brain recovery processes. Ann N Y Acad Sci 1169:372–373. doi: NYAS04869.10.1111/j.1749-6632.2009.04869.x PubMedCrossRefGoogle Scholar
  89. Schlaug G, Marchina S, Norton A (2009) Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Ann N Y Acad Sci 1169:385–394. doi: NYAS04587.10.1111/j.1749-6632.2009.04587.x PubMedCrossRefGoogle Scholar
  90. Schmidt LA, Trainor LJ (2001) Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn Emot 15(4):487–500. doi: 10.1080/02699930126048 Google Scholar
  91. Segrave RA, Cooper NR, Thomson RH, Croft RJ, Sheppard DM, Fitzgerald PB (2011) Individualized alpha activity and frontal asymmetry in major depression. Clin EEG Neurosci 42(1):45–52PubMedCrossRefGoogle Scholar
  92. Sluming V, Barrick T, Howard M, Cezayirli E, Mayes A, Roberts N (2002) Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage 17(3):1613–1622. doi: 10.1006/nimg.2002.1288 PubMedCrossRefGoogle Scholar
  93. Sobocki P, Jönsson B, Angst J, Rehnberg C (2006) Cost of depression in Europe. J Ment Health Policy 9(2):87–98Google Scholar
  94. Stewart JL, Bismark AW, Towers DN, Coan JA, Allen JJB (2010) Resting frontal EEG asymmetry as an endophenotype for depression risk: sex-specific patterns of frontal brain asymmetry. J Abnorm Psychol 119(3):502–512. doi: 10.1037/a0019196 PubMedCrossRefGoogle Scholar
  95. Suetsugi M, Mizuki Y, Ushijima I, Kobayashi T, Tsuchiya K, Aoki T, Watanabe Y (2000) Appearance of frontal midline theta activity in patients with generalized anxiety disorder. Neuropsychobiology 41(2):108–112. doi: nps41108 PubMedCrossRefGoogle Scholar
  96. Thatcher RW (2010) Validity and reliability of quantitative electroencephalography. J Neurother 14(2):122–152CrossRefGoogle Scholar
  97. Thatcher RW, Walker RA, Biver CJ, North DM, Curtin R (2003) Quantitiative EEG normative databases: validation and clinical correlation. J Neurother 7:87–105CrossRefGoogle Scholar
  98. Thatcher RW, Biver C, North D (2009) Neuroguide. 2.5.6th edn. http://www.appliedneuroscience.com. St Petersburg
  99. Thibodeau R, Jorgensen RS, Kim S (2006) Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J Abnorm Psychol 115(4):715–729. doi: 10.1037/0021-843X.115.4.715 PubMedCrossRefGoogle Scholar
  100. Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, Friederici AD, von Cramon DY (2006) Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. Neuroimage 31(4):1771–1782. doi: 10.1016/j.neuroimage.2006.02.028 PubMedCrossRefGoogle Scholar
  101. Tornek A, Field T, Hernandez-Reif M, Diego M, Jones N (2003) Music effects on EEG in intrusive and withdrawn mothers with depressive symptoms. Psychiatry : Interpers Biol Process 66(3):234–243CrossRefGoogle Scholar
  102. Tuulakari J, Aromaa E, Herberts K, Wahlbeck K (2007) Pohjalainen masennus ja hakeutuminen hoitoon (Ostrobothnian depression and seeking for treatment). Suomen lääkärilehti 62:790–791Google Scholar
  103. Williamson JB, Harrison DW, Shenal BV, Rhodes R, Demaree HA (2003) Quantitative EEG diagnostic confirmation of expressive aprosodia. Appl Neuropsychol 10(3):176–181. doi: 10.1207/S15324826AN1003_07 PubMedCrossRefGoogle Scholar
  104. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC (2011) The size and burden of mental disorders and other disorders of the brain in Europe. Eur Neuropsychopharmacol 21(9):655–679. doi: 10.1016/j.euroneuro.2011.07.018 PubMedCrossRefGoogle Scholar
  105. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jörg Fachner
    • 1
    Email author
  • Christian Gold
    • 2
  • Jaakko Erkkilä
    • 1
  1. 1.Department of Music, Finnish Centre of Excellence in Interdisciplinary Music ResearchUniversity of JyväskyläJyväskyläFinland
  2. 2.Uni Research, Grieg Academy MusicTherapy Research Centre (GAMUT)BergenNorway

Personalised recommendations