Brain Topography

, Volume 26, Issue 1, pp 126–134 | Cite as

Aerobic Fitness and the Brain: Increased N-Acetyl-Aspartate and Choline Concentrations in Endurance-Trained Middle-Aged Adults

  • Mitzi M. Gonzales
  • Takashi Tarumi
  • Sonya Kaur
  • Nantinee Nualnim
  • Bennett A. Fallow
  • Martha Pyron
  • Hirofumi Tanaka
  • Andreana P. Haley
Original Paper

Abstract

Engagement in regular aerobic exercise is associated with cognitive benefits, but information on the mechanisms governing these changes in humans is limited. The goal of the current study was to compare neurometabolite concentrations relating to cellular metabolism, structure, and viability in endurance-trained and sedentary middle-aged adults. Twenty-eight endurance-trained and 27 sedentary adults, aged 40–65 years, underwent general health assessment, cardiorespiratory fitness measurement, neuropsychological testing, and proton magnetic resonance spectroscopy (1H MRS). 1H MRS was used to examine N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in frontal and occipitoparietal grey matter. Group differences in concentrations of NAA, Cho, mI, and Glu, calculated as ratios over Cr, were explored using ANOVA. There were no significant differences in global cognitive function, memory, and executive function performance between the groups. In comparison to sedentary adults, the endurance-trained group displayed significantly higher NAA/Cr in the frontal grey matter (F(1, 53) = 5.367, p = 0.024) and higher Cho/Cr in the occipitoparietal grey matter (F(1, 53) = 5.138, p = 0.028). Within our middle-aged sample, endurance-trained adults demonstrated higher levels of NAA/Cr in the frontal grey matter and higher Cho/Cr in the occipitoparietal grey matter. Higher levels of NAA may indicate greater neuronal integrity and higher cerebral metabolic efficiency in association with cardiorespiratory fitness, whereas increased Cho may represent increased phospholipid levels secondary to neural plasticity.

Keywords

Aerobic fitness 1H MRS N-acetyl-aspartate Choline Endurance exercise 

References

  1. Adibhatla RM, Hatcher JF, Dempsey RJ (2001) Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke 32:2376–2381PubMedCrossRefGoogle Scholar
  2. Angelie E, Bonmartin A, Boudraa A, Gonnaud PM, Mallet JJ, Sappey-Marinier D (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. Am J Neuroradiol 22:119–127PubMedGoogle Scholar
  3. Araki W, Wurtman RJ (1997) Control of membrane phosphatidylcholine biosynthesis by diacylglycerol levels in neuronal cells undergoing neurite outgrowth. Proc Natl Acad Sci USA 94:11946–11950PubMedCrossRefGoogle Scholar
  4. Barnes DE, Yaffe K, Satariano WA, Tager IB (2003) A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J Am Geriatr Soc 51:459–465PubMedCrossRefGoogle Scholar
  5. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381Google Scholar
  6. Cheng LL, Newell K, Mallory AE, Hyman BT, Gonzalez RG (2002) Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn Reson Imaging 20:527–533PubMedCrossRefGoogle Scholar
  7. Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276PubMedCrossRefGoogle Scholar
  8. Cohen PA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R, Taylor M, Thompson P, Tate D, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B, HIV Neuroimaging Consortium (2010) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 16:435–444PubMedGoogle Scholar
  9. Colcombe SJ, Kramer AF (2003) Fitness effects on the cognitive function of older adults. Psychol Sci 14:125–130PubMedCrossRefGoogle Scholar
  10. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A 58:176–180CrossRefGoogle Scholar
  11. Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci 101:3316–3321PubMedCrossRefGoogle Scholar
  12. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A 61:1166–1170CrossRefGoogle Scholar
  13. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund ULF, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395PubMedCrossRefGoogle Scholar
  14. Delis DC, Kramer JH, Kaplan E, Ober BA (1987) California verbal learning test: adult version. The Psychological Corporation, San AntonioGoogle Scholar
  15. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415PubMedCrossRefGoogle Scholar
  16. Erickson KI, Weinstein AM, Sutton BP, Prakash RS, Voss MW, Chaddock L, Szabo A, Mailey E, White SM, Wojcicki TR, McAuley E, Kramer AF (2012) Beyond vascularization: aerobic fitness on n-acetylaspartate and memory. Brain Behav 2:32–41PubMedGoogle Scholar
  17. Folstein MF, Folstein SE, McHugh PR (1975) Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  18. Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52:1384–1391PubMedCrossRefGoogle Scholar
  19. Gordon BA, Rykhlevskaia EI, Brumback CR, Lee Y, Elavsky S, Konopack JF, McAuley E, Kramer AF, Colcombe S, Gratton G, Fabiani M (2008) Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology 45:825–838PubMedCrossRefGoogle Scholar
  20. Griffith H, Randall GH, Hollander JA, Okonkwo O, Evanochko WT, Harrell LE, Zamrini EY, Brockington JC, Marson DC (2007) Executive function is associated with brain proton magnetic resonance spectroscopy in amnestic mild cognitive impairment. J Clin Exp Neuropsychol 29:599–609PubMedCrossRefGoogle Scholar
  21. Gutiérrez-Fernández M, Rodríguez-Frutos B, Fuentes B, Vallejo-Cremades MT, Álvarez-Grech J, Expósito-Alcaide M, Diez-Tejedor E (2011) CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke. Neurochem Int 60:310–317PubMedCrossRefGoogle Scholar
  22. Haley A, Gonzales M, Tarumi T, Miles S, Goudarzi K, Tanaka H (2010a) Elevated cerebral glutamate and myo-inositol levels in middle-aged adults with metabolic syndrome. J Cereb Blood Flow Metab 4:397–405Google Scholar
  23. Haley AP, Tarumi T, Gonzales MM, Suwagara J, Tanaka H (2010b) Subclinical atherosclerosis is related to lower neuronal viability in middle-aged adults: a 1H MRS study. Brain Res 1344:54–61PubMedCrossRefGoogle Scholar
  24. Herminghaus S, Pilatus U, Möller-Hartmann W, Raab P, Lanfermann H, Schlote W, Zanella FE (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385–392PubMedCrossRefGoogle Scholar
  25. Hurtado O, Cárdenas A, Pradillo JM, Morales JR, Ortego F, Sobrino T, Castillo J, Moro MA, Lizasoain I (2007) A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke. Neurobiol Dis 26:105–111PubMedCrossRefGoogle Scholar
  26. Inglese M, Li BSY, Rusinek H, Babb JS, Grossman RI, Gonen O (2003) Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 50:190–195PubMedCrossRefGoogle Scholar
  27. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217PubMedCrossRefGoogle Scholar
  28. Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063PubMedCrossRefGoogle Scholar
  29. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, Kukull W (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81PubMedGoogle Scholar
  30. Lezak M, Howieson D, Loring D, Hannay H, Fischer J (2004) Neuropsychological assessment, 4th edn. Oxford University Press, New YorkGoogle Scholar
  31. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive shock therapy. Biol Psychiatry 47:1043–1049PubMedCrossRefGoogle Scholar
  32. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. J Physiol Cell Physiol 292:C670–C686CrossRefGoogle Scholar
  33. Navarro A, Gomez C, López-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:R505–R511PubMedCrossRefGoogle Scholar
  34. Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56PubMedCrossRefGoogle Scholar
  35. Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320PubMedCrossRefGoogle Scholar
  36. Park DC, Polk TA, Mikels JA, Taylor SF, Marshuetz C (2001) Cerebral aging: integration of brain and behavioral models of cognitive function. Dialog Clin Neurosci 3:151–166Google Scholar
  37. Pettegrew JW, Panchalingam K, Withers G, McKeag D, Strychor S (1999) Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J Neuropathol Exp Neurol 49:237–249CrossRefGoogle Scholar
  38. Prakash R, Snook EM, Motl RW, Kramer AF (2010) Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res 1341:41–51PubMedCrossRefGoogle Scholar
  39. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRefGoogle Scholar
  40. Redila VA, Christie BR (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137:1299–1307PubMedCrossRefGoogle Scholar
  41. Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8:271–276Google Scholar
  42. Ross AJ, Sachdev PS (2004) Magnetic resonance spectroscopy in cognitive research. Brain Res Rev 44:83–102PubMedCrossRefGoogle Scholar
  43. Ruff RM, Light RH, Parker SB, Levin HS (1996) Benton controlled oral word association test: reliability and updated norms. Arch Clin Neuropsychol 11:329–338PubMedGoogle Scholar
  44. Sartorius A, Neumann-Haefelin C, Vollmayr B, Hoehn M, Henn FA (2003) Choline rise in the rat hippocampus induced by electroconvulsive shock treatment. Biol Psychiatry 53:620–623PubMedCrossRefGoogle Scholar
  45. Signoretti S, Marmarou A, Aygok GA, Fatouros PP, Portella G, Bullock RM (2008) Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg Pediatr 108:42–52Google Scholar
  46. Skullerud K (1985) Variations in the size of the human brain. Influence of age, sex, body length, body mass index, alcoholism, Alzheimer changes, and cerebral atherosclerosis. Acta Neurol Scand Suppl 102:1–94PubMedGoogle Scholar
  47. St John PD, Montgomery PR, Kristjansson B, McDowell I (2002) Cognitive scores, even within the normal range, predict death and institutionalization. Age Ageing 31:373–378PubMedCrossRefGoogle Scholar
  48. Staffen W, Zauner H, Mair A, Kutzelnigg A, Kapeller P, Stangl H, Raffer E, Niederhofer H, Ladurner G (2005) Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis. J Neuropsychiatry Clin Neurosci 17:357–363PubMedCrossRefGoogle Scholar
  49. Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022PubMedCrossRefGoogle Scholar
  50. Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362PubMedCrossRefGoogle Scholar
  51. Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  52. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590PubMedCrossRefGoogle Scholar
  53. Wechsler D (1997) WAIS-III administration and scoring manual, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  54. Wechsler D (2001) Wechsler test of adult reading: WTAR. The Psychological Corporation, San AntonioGoogle Scholar
  55. Wilson TM, Tanaka H (2000) Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status. Am J Physiol Heart Circ Physiol 278:H829–H834PubMedGoogle Scholar
  56. World Health Organization (2005) Preventing chronic diseases: a vital investment. WHO Global Report, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mitzi M. Gonzales
    • 1
  • Takashi Tarumi
    • 2
  • Sonya Kaur
    • 1
  • Nantinee Nualnim
    • 2
  • Bennett A. Fallow
    • 2
  • Martha Pyron
    • 2
    • 4
  • Hirofumi Tanaka
    • 2
  • Andreana P. Haley
    • 1
    • 3
  1. 1.Department of PsychologyThe University of Texas at AustinAustinUSA
  2. 2.Department of Kinesiology and Health EducationThe University of Texas at AustinAustinUSA
  3. 3.University of Texas Imaging Research CenterAustinUSA
  4. 4.Medicine in MotionAustinUSA

Personalised recommendations