Brain Topography

, Volume 26, Issue 1, pp 110–125 | Cite as

Musicianship Boosts Perceptual Learning of Pseudoword-Chimeras: An Electrophysiological Approach

  • Jürg KühnisEmail author
  • Stefan Elmer
  • Martin Meyer
  • Lutz Jäncke
Original Paper


A vast amount of previous work has consistently revealed that professional music training is associated with functional and structural alterations of auditory-related brain regions. Meanwhile, there is also an increasing array of evidence, which shows that musicianship facilitates segmental, as well as supra-segmental aspects of speech processing. Based on this evidence, we addressed a novel research question, namely whether professional music training has an influence on the perceptual learning of speech sounds. In the context of an EEG experiment, we presented auditory pseudoword-chimeras, manipulated in terms of spectral- or envelope-related acoustic information, to a group of professional musicians and non-musicians. During EEG measurements, participants were requested to assign the auditory-presented pseudoword-chimeras to one out of four visually presented templates. As expected, both groups showed behavioural learning effects during the time course of the experiment. These learning effects were associated with an increase in accuracy, a decrease in reaction time, as well as a decrease in the P2-like microstate duration in both groups. Notably, the musicians showed an increased learning performance compared to the controls during the first two runs of the spectral condition. This perceptual learning effect, which varies as a function of musical expertise, was reflected by a reduction of the P2-like microstate duration. Results may mirror transfer effects from musical training to the processing of spectral information in speech sounds. Hence, this study provides first evidence for a relationship between changes in microstates, musical expertise, and perceptual verbal learning mechanisms.


EEG Microstates Topographical pattern analysis Auditory chimeras Perceptual learning Musical expertise Plasticity 



We thank Sarah McCourt Meyer for comments on a previous version of the manuscript. This work was supported by Swiss National Foundation (320030-120661 and 4-62341-08).

Conflict of interest



  1. Alain C, Campeanu S, Tremblay K (2010) Changes in sensory evoked responses coincide with rapid improvement in speech identification performance. J Cogn Neurosci 22(2):392–403. doi: 10.1162/jocn.2009.21279 PubMedCrossRefGoogle Scholar
  2. Aleman A, Nieuwenstein MR, Bocker KB, de Haan EH (2000) Music training and mental imagery ability. Neuropsychologia 38(12):1664–1668PubMedCrossRefGoogle Scholar
  3. Annett J (1970) Role of action feedback in acquisition of simple motor responses. J Motor Behav 2(3):217–221Google Scholar
  4. Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59(4):390–412. doi: 10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
  5. Baumann S, Meyer M, Jancke L (2008) Enhancement of auditory-evoked potentials in musicians reflects an influence of expertise but not selective attention. J Cogn Neurosci 20(12):2238–2249. doi: 10.1162/jocn.2008.20157 PubMedCrossRefGoogle Scholar
  6. Ben-David BM, Campeanu S, Tremblay KL, Alain C (2010) Auditory evoked potentials dissociate rapid perceptual learning from task repetition without learning. Psychophysiology. doi: 10.1111/j.1469-8986.2010.01139.x PubMedGoogle Scholar
  7. Besson M, Schon D, Moreno S, Santos A, Magne C (2007) Influence of musical expertise and musical training on pitch processing in music and language. Restor Neurol Neurosci 25(3–4):399–410PubMedGoogle Scholar
  8. Besson M, Chobert J, Marie Cl (2011) Transfer of training between music and speech: common processing, attention and memory. Frontiers in Psychology 2: 94. doi: 10.3389/fpsyg.2011.00094
  9. Bilhartz TD, Bruhn RA, Olson JE (1999) The effect of early music training on child cognitive development. J Appl Dev Psychol 20(4):615–636CrossRefGoogle Scholar
  10. Boh B, Herholz SC, Lappe C, Pantev C (2011) Processing of complex auditory patterns in musicians and nonmusicians. PLoS One 6(7):e21458. doi: 10.1371/journal.pone.0021458.PONE-D-11-01681 PubMedCrossRefGoogle Scholar
  11. Brochard R, Dufour A, Despres O (2004) Effect of musical expertise on visuospatial abilities: evidence from reaction times and mental imagery. Brain Cogn 54(2):103–109. doi: 10.1016/S0278-2626(03)00264 PubMedCrossRefGoogle Scholar
  12. Brysbaert M (2007) “The language-as-fixed-effect fallacy”: Some simple SPSS solutions to a complex problem. University of London, Royal HollowayGoogle Scholar
  13. Clark HH (1973) Language as fixed-effect fallacy: critique of language statistics in psychological research. J Verb Learn Verb Be 12(4):335–359CrossRefGoogle Scholar
  14. Draganova R, Wollbrink A, Schulz M, Okamoto H, Pantev C (2009) Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training. BMC Neurosci 10:143. doi: 10.1186/1471-2202-10-143 PubMedCrossRefGoogle Scholar
  15. Elmer S, Meyer M, Jancke L (2012) Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb Cortex 22(3):650–658. doi: bhr142 [pii] 10.1093/cercor/bhr142
  16. Fort A, Delpuech C, Pernier J, Giard MH (2002) Dynamics of cortico-subcortical cross-modal operations involved in audio-visual object detection in humans. Cereb Cortex 12(10):1031–1039PubMedCrossRefGoogle Scholar
  17. Gaab N, Tallal P, Kim H, Lakshminarayanan K, Archie JJ, Glover GH, Gabrieli JD (2005) Neural correlates of rapid spectrotemporal processing in musicians and nonmusicians. Ann N Y Acad Sci 1060:82–88. doi: 10.1196/annals.1360.040 PubMedCrossRefGoogle Scholar
  18. Gordon E (1989) Advanced measures of music audition. GIA Publications, ChicagoGoogle Scholar
  19. Hillyard SA (1981) Selective auditory attention and early event-related potentials: a rejoinder. Can J Psychol 35(2):159–174PubMedCrossRefGoogle Scholar
  20. Ho Y-C, Cheung M-C, Chan AS (2003) Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology 17(3):439–450PubMedCrossRefGoogle Scholar
  21. Hyde M (1997) The N1 response and its applications. Audiol Neurootol 2(5):281–307PubMedCrossRefGoogle Scholar
  22. Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) The effects of musical training on structural brain development: a longitudinal study. Ann N Y Acad Sci 1169:182–186. doi: 10.1111/j.1749-6632.2009.04852.x PubMedCrossRefGoogle Scholar
  23. Jancke L (1996) The hand performance test with a modified time limit instruction enables the examination of hand performance asymmetries in adults. Percept Motor Skill 82(3):735–738CrossRefGoogle Scholar
  24. Jancke L (2009) The plastic human brain. Restor Neurol Neurosci 27(5):521–538. doi: 10.3233/RNN-2009-0519 PubMedGoogle Scholar
  25. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178PubMedCrossRefGoogle Scholar
  26. Kraus N, Chandrasekaran B (2010) Music training for the development of auditory skills. Nat Rev Neurosci 11(8):599–605. doi: 10.1038/nrn2882 PubMedCrossRefGoogle Scholar
  27. Kraus N, Skoe E, Parbery-Clark A (2008) Auditory processing of pitch, timbre and time: implications for language and music. Paper presented at the 2008 Research symposium: hear our voices, MilwaukeeGoogle Scholar
  28. Kraus N, Skoe E, Parbery-Clark A, Ashley R (2009) Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann N Y Acad Sci 1169:543–557. doi: 10.1111/j.1749-6632.2009.04549.x PubMedCrossRefGoogle Scholar
  29. Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44(1):23–34CrossRefGoogle Scholar
  30. Kuriki S, Kanda S, Hirata Y (2006) Effects of musical experience on different components of MEG responses elicited by sequential piano-tones and chords. J Neurosci 26(15):4046–4053. doi: 10.1523/JNEUROSCI.3907-05.2006 PubMedCrossRefGoogle Scholar
  31. Lee KM, Skoe E, Kraus N, Ashley R (2009) Selective subcortical enhancement of musical intervals in musicians. J Neurosci 29(18):5832–5840. doi: 10.1523/JNEUROSCI.6133-08.2009 PubMedCrossRefGoogle Scholar
  32. Lehmann D, Michel CM (2011) EEG-defined functional microstates as basic building blocks of mental processes. Clin Neurophysiol 122(6):1073–1074. doi: 10.1016/j.clinph.2010.11.003 PubMedCrossRefGoogle Scholar
  33. Lehrl S (1977) Mehrfachwahl-wortschatz intelligenz test (MWT-B). Perimed, ErlangenGoogle Scholar
  34. Lehrl S, Gallwitz A, Blaha V, Fischer B (1991) Theorie und Messung der geistigen Leistungsfähigkeit mit dem Kurztest KAI. Vless, EbersbergGoogle Scholar
  35. Locker L, Hoffman L, Bovaird JA (2007) On the use of multilevel modeling as an alternative to items analysis in psycholinguistic research. Behav Res Methods 39(4):723–730PubMedCrossRefGoogle Scholar
  36. Luo H, Poeppel D (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54(6):1001–1010. doi: 10.1016/j.neuron.2007.06.004 PubMedCrossRefGoogle Scholar
  37. Magne C, Schon D, Besson M (2006) Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J Cogn Neurosci 18(2):199–211. doi: 10.1162/089892906775783660 PubMedCrossRefGoogle Scholar
  38. Marie C, Magne C, Besson M (2011) Musicians and the metric structure of words. J Cogn Neurosci 23(2):294–305. doi: 10.1162/jocn.2010.21413 PubMedCrossRefGoogle Scholar
  39. Marques C, Moreno S, Castro SL, Besson M (2007) Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence. J Cognit Neurosci 19(9):1453–1463CrossRefGoogle Scholar
  40. Meyer M, Baumann S, Jancke L (2006) Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage 32(4):1510–1523. doi: 10.1016/j.neuroimage.2006.04.193 PubMedCrossRefGoogle Scholar
  41. Meyer M, Elmer S, Baumann S, Jancke L (2007) Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music. Restor Neurol Neurosci 25(3–4):411–431PubMedGoogle Scholar
  42. Meyer M, Elmer S, Ringli M, Oechslin MS, Baumann S, Jancke L (2011) Long-term exposure to music enhances the sensitivity of the auditory system in children. Eur J Neurosci 34(5):755–765. doi: 10.1111/j.1460-9568.2011.07795.x PubMedCrossRefGoogle Scholar
  43. Michel CM, Koenig Th, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroimaging in the time domain: microstate analysis. In: Michel CM, Koenig Th, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging. Cambridge University Press, Cambridge, pp 123–125Google Scholar
  44. Milovanov R, Tervaniemi M (2011) The interplay between musical and linguistic aptitudes: a review. Frontiers in Psychol 2. doi: 10.3389/fpsyg.2011.00321
  45. Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M (2009) Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex 19(3):712–723. doi: 10.1093/cercor/bhn120 PubMedCrossRefGoogle Scholar
  46. Munte TF, Altenmuller E, Jancke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3(6):473–478PubMedGoogle Scholar
  47. Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, Foxe JJ (2002) The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. J Neurosci 22(12):5055–5073PubMedGoogle Scholar
  48. Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Gonzalez Andino S, Schnider A (2004) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. NeuroImage 21(1):125–135PubMedCrossRefGoogle Scholar
  49. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264. doi: 10.1007/s10548-008-0054-5 PubMedCrossRefGoogle Scholar
  50. Oechslin MS, Meyer M, Jancke L (2010) Absolute pitch–functional evidence of speech-relevant auditory acuity. Cereb Cortex 20(2):447–455. doi: 10.1093/cercor/bhp113 PubMedCrossRefGoogle Scholar
  51. Ostroff JM, Martin BA, Boothroyd A (1998) Cortical evoked response to acoustic change within a syllable. Ear Hearing 19(4):290–297CrossRefGoogle Scholar
  52. Ott CG, Langer N, Oechslin M, Meyer M, Jancke L (2011) Processing of voiced and unvoiced acoustic stimuli in musicians. Front Psychol 2:195. doi: 10.3389/fpsyg.2011.00195 PubMedCrossRefGoogle Scholar
  53. Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814. doi: 10.1038/33918 PubMedCrossRefGoogle Scholar
  54. Pantev C, Engelien A, Candia V, Elbert T (2001a) Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci 930:300–314PubMedCrossRefGoogle Scholar
  55. Pantev C, Roberts LE, Schulz M, Engelien A, Ross B (2001b) Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport 12(1):169–174PubMedCrossRefGoogle Scholar
  56. Patel AD (2011) Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology 2. doi: 10.3389/fpsyg.2011.00142
  57. Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroen Clin Neuro 66(1):75–81CrossRefGoogle Scholar
  58. Picton TW, Hillyard SA (1974) Human auditory evoked potentials. II. Effects of attention. Electroencephalogr Clin Neurophysiol 36(2):191–199PubMedGoogle Scholar
  59. Pratt H, Starr A, Michalewski HJ, Bleich N, Mittelman N (2007) The N1 complex to gaps in noise: effects of preceding noise duration and intensity. Clin Neurophysiol 118(5):1078–1087. doi: 10.1016/j.clinph.2007.01.005 PubMedCrossRefGoogle Scholar
  60. Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338(1):17–49. doi: 10.1002/cne.903380104 PubMedCrossRefGoogle Scholar
  61. Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103PubMedGoogle Scholar
  62. Schlaug G (2001) The brain of musicians. A model for functional and structural adaptation. Ann N Y Acad Sci 930:281–299PubMedCrossRefGoogle Scholar
  63. Schlaug G, Jancke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267(5198):699–701PubMedCrossRefGoogle Scholar
  64. Schlaug G, Norton A, Overy K, Winner E (2005) Effects of music training on the child’s brain and cognitive development. Ann N Y Acad Sci 1060:219–230. doi: 10.1196/annals.1360.015 PubMedCrossRefGoogle Scholar
  65. Schlegel F, Lehmann D, Faber PL, Milz P, Gianotti LR (2011) EEG microstates during resting represent personality differences. Brain Topogr. doi: 10.1007/s10548-011-0189-7 PubMedGoogle Scholar
  66. Schneider P, Sluming V, Roberts N, Bleeck S, Rupp A (2005a) Structural, functional, and perceptual differences in Heschl’s gyrus and musical instrument preference. Ann N Y Acad Sci 1060:387–394. doi: 10.1196/annals.1360.033 PubMedCrossRefGoogle Scholar
  67. Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005b) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247. doi: 10.1038/nn1530 PubMedCrossRefGoogle Scholar
  68. Schön D, Francois C (2011) Musical expertise and statistical learning of musical and linguistic structures. Frontiers in Psychology 2. doi: 10.3389/fpsyg.2011.00167
  69. Schon D, Magne C, Besson M (2004) The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology 41(3):341–349. doi: 10.1111/1469-8986.00172.X PubMedCrossRefGoogle Scholar
  70. Schwent VL, Hillyard SA (1975) Evoked potential correlates of selective attention with multi-channel auditory inputs. Electroencephalogr Clin Neurophysiol 38(2):131–138PubMedCrossRefGoogle Scholar
  71. Shahin AJ (2011) Neurophysiological influence of musical training on speech perception. Front Psychol 2:126. doi: 10.3389/fpsyg.2011.00126 PubMedCrossRefGoogle Scholar
  72. Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE (2003) Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. J Neurosci 23(13):5545–5552PubMedGoogle Scholar
  73. Shahin A, Roberts LE, Pantev C, Trainor LJ, Ross B (2005) Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16):1781–1785. doi: 00001756-200511070-00011 PubMedCrossRefGoogle Scholar
  74. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270(5234):303–304PubMedCrossRefGoogle Scholar
  75. Sharma A, Marsh CM, Dorman MF (2000) Relationship between N1 evoked potential morphology and the perception of voicing. J Acoust Soc Am 108(6):3030–3035PubMedCrossRefGoogle Scholar
  76. Shen C, Smith ZM, Oxenham AJ, Delgutte B (2001) Auditory chimera demo.
  77. Sluming V, Brooks J, Howard M, Downes JJ, Roberts N (2007) Broca’s area supports enhanced visuospatial cognition in orchestral musicians. J Neurosci 27(14):3799–3806. doi: 10.1523/Jneurosci.0147-07.2007 PubMedCrossRefGoogle Scholar
  78. Smith ZM, Delgutte B, Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416(6876):87–90. doi: 10.1038/416087a PubMedCrossRefGoogle Scholar
  79. Sturm W, Willmes K (1999) Verbaler Lerntest und Nonverbaler Lerntest (VLT/NVLT). Hogrefe, GöttingenGoogle Scholar
  80. Tibshirani R, Walther G (2005) Cluster validation by prediction strength. J Comput Graph Stat 14(3):511–528. doi: 10.1198/106186005x59243 CrossRefGoogle Scholar
  81. Trainor LJ, Shahin A, Roberts LE (2003) Effects of musical training on the auditory cortex in children. Ann N Y Acad Sci 999:506–513PubMedCrossRefGoogle Scholar
  82. Vaughan HG Jr, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol 28(4):360–367PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jürg Kühnis
    • 1
    Email author
  • Stefan Elmer
    • 1
  • Martin Meyer
    • 2
    • 4
  • Lutz Jäncke
    • 1
    • 2
    • 3
  1. 1.Division of Neuropsychology, Institute of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Center for Integrative Human PhysiologyZurichSwitzerland
  3. 3.International Normal Aging and Plasticity Imaging Center (INAPIC)ZurichSwitzerland
  4. 4.Research Unit for Plasticity and Learning in the Healthy Aging Brain (HAB LAB)University of ZurichZurichSwitzerland

Personalised recommendations