Brain Topography

, Volume 26, Issue 2, pp 247–263 | Cite as

Processing of Coherent Visual Motion in Topographically Organized Visual Areas in Human Cerebral Cortex

  • Randolph F. Helfrich
  • Hubertus G.T. Becker
  • Thomas HaarmeierEmail author
Original Paper


Recent imaging studies in human subjects have demonstrated representations of global visual motion in medial parieto-occipital cortex (area V6) and posterior parietal cortex, the latter containing at least seven topographically organized areas along the intraparietal sulcus (IPS0–IPS5, SPL1). In this fMRI study we used topographic mapping procedures to delineate a total of 18 visual areas in human cerebral cortex and tested their responsiveness to coherent visual motion under conditions of controlled attention and fixation. Preferences for coherent visual motion as compared to motion noise as well as hemispheric asymmetries were assessed for contralateral, ipsilateral, and bilateral visual motion presentations. Except for areas V1–V4 and IPS3-5, all other areas showed stronger responses to coherent motion with the most significant activations found in V6, followed by MT/MST, V3A, IPS0-2 and SPL1. Hemispheric differences were negligible altogether suggesting that asymmetries in parietal cortex observed in cognitive tasks do not reflect differences in basic visual response properties. Interestingly, areas V6, MST, V3A, and areas along the intraparietal sulcus showed specific representations of coherent visual motion not only when presented in the hemifield primarily covered by the given visual representation but also when presented in the ipsilateral visual field. This finding suggests that coherent motion induces a switch in spatial representation in specialized motion areas from contralateral to full-field coding.


fMRI Visual motion processing V6 MST Intraparietal sulcus Hemispheric asymmetries 



Analysis of variance


blood oxygen level-dependent


Echo planar imaging


Functional magnetic resonance imaging


Intraparietal sulcus


Lateral occipital sulcus/complex


Medial superior temporal area


Middle temporal area

MT+ complex

Middle temporal complex


Posterior part of the inferior temporal sulcus


Parieto-occipital intraparietal sulcus


Percent signal change


Region of interest


Superior parietal lobe


Transverse occipital sulcus


Ventral intraparietal area



The authors are grateful to Rüdiger Berndt and especially Dr. Friedemann Bunjes for their technical assistance. We thank M.B. Wall for his initial remarks on the retinotopic mapping analysis.


  1. Allman JM, Kaas JH (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res 35(1):89–106CrossRefPubMedGoogle Scholar
  2. Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718CrossRefPubMedGoogle Scholar
  3. Andersen RA (1989) Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 12:377–403CrossRefPubMedGoogle Scholar
  4. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699PubMedGoogle Scholar
  5. Becker HG, Erb M, Haarmeier T (2008) Differential dependency on motion coherence in subregions of the human MT+ complex. Eur J Neurosci 28(8):1674–1685CrossRefPubMedGoogle Scholar
  6. Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189CrossRefPubMedGoogle Scholar
  7. Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Hartley T, Turner R (2001) Brain areas sensitive to coherent visual motion. Perception 30(1):61–72CrossRefPubMedGoogle Scholar
  8. Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758CrossRefPubMedGoogle Scholar
  9. Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296CrossRefPubMedGoogle Scholar
  10. Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973CrossRefPubMedGoogle Scholar
  11. Cavada C (2001) The visual parietal areas in the macaque monkey: current structural knowledge and ignorance. Neuroimage 14(1 Pt 2):S21–S26CrossRefPubMedGoogle Scholar
  12. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  13. Colby CL, Duhamel JR, Goldberg ME (1993) The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals. Prog Brain Res 95:307–316CrossRefPubMedGoogle Scholar
  14. Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21(2):757–767CrossRefPubMedGoogle Scholar
  15. Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189CrossRefPubMedGoogle Scholar
  16. DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93(6):2382–2386CrossRefPubMedGoogle Scholar
  17. Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35(2):528–532CrossRefPubMedGoogle Scholar
  18. Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136PubMedGoogle Scholar
  19. Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000PubMedGoogle Scholar
  20. Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10(5):454–463CrossRefPubMedGoogle Scholar
  21. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369(6481):525CrossRefPubMedGoogle Scholar
  22. Evangeliou MN, Raos V, Galletti C, Savaki HE (2009) Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex 19(3):624–639CrossRefPubMedGoogle Scholar
  23. Fattori P, Galletti C, Battaglini PP (1992) Parietal neurons encoding visual space in a head-frame of reference. Boll Soc Ital Biol Sper 68(11):663–670PubMedGoogle Scholar
  24. Fattori P, Pitzalis S, Galletti C (2009) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103(1–2):88–97CrossRefPubMedGoogle Scholar
  25. Fox PT, Raichle ME (1985) Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17(3):303–305CrossRefPubMedGoogle Scholar
  26. Galletti C, Battaglini PP, Fattori P (1991) Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey. Eur J Neurosci 3(5):452–461CrossRefPubMedGoogle Scholar
  27. Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52CrossRefPubMedGoogle Scholar
  28. Galletti C, Fattori P, Gamberini M, Kutz DF (1999a) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11(11):3922–3936CrossRefPubMedGoogle Scholar
  29. Galletti C, Fattori P, Kutz DF, Gamberini M (1999b) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11(2):575–582CrossRefPubMedGoogle Scholar
  30. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588CrossRefPubMedGoogle Scholar
  31. Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573CrossRefPubMedGoogle Scholar
  32. Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17CrossRefPubMedGoogle Scholar
  33. Haarmeier T, Kammer T (2010) Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex 20(9):2234–2243CrossRefPubMedGoogle Scholar
  34. Haarmeier T, Thier P (1998) An electrophysiological correlate of visual motion awareness in man. J Cogn Neurosci 10(4):464–471CrossRefPubMedGoogle Scholar
  35. Hagler DJ Jr, Riecke L, Sereno MI (2007) Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 35(4):1562–1577CrossRefPubMedGoogle Scholar
  36. Handel B, Lutzenberger W, Thier P, Haarmeier T (2008) Selective attention increases the dependency of cortical responses on visual motion coherence in man. Cereb Cortex 18(12):2902–2908CrossRefPubMedGoogle Scholar
  37. Heide W, Kompf D (1998) Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Exp Brain Res 123(1–2):164–171CrossRefPubMedGoogle Scholar
  38. Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205PubMedGoogle Scholar
  39. Jack AI, Patel GH, Astafiev SV, Snyder AZ, Akbudak E, Shulman GL, Corbetta M (2007) Changing human visual field organization from early visual to extra-occipital cortex. PLoS ONE 2(5):e452CrossRefPubMedGoogle Scholar
  40. Kaido T, Hoshida T, Taoka T, Sakaki T (2004) Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg 101(1):114–118CrossRefPubMedGoogle Scholar
  41. Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820CrossRefPubMedGoogle Scholar
  42. Konen CS, Kastner S (2008) Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci 28(33):8361–8375CrossRefPubMedGoogle Scholar
  43. Kovacs G, Cziraki C, Vidnyanszky Z, Schweinberger SR, Greenlee MW (2008a) Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. Neuroimage 43(1):156–164CrossRefPubMedGoogle Scholar
  44. Kovacs G, Raabe M, Greenlee MW (2008b) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18(8):1779–1787CrossRefPubMedGoogle Scholar
  45. Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26(51):13128–13142CrossRefPubMedGoogle Scholar
  46. Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95(2): 862–881CrossRefPubMedGoogle Scholar
  47. Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586PubMedGoogle Scholar
  48. McKeefry DJ, Watson JD, Frackowiak RS, Fong K, Zeki S (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5(1):1–12CrossRefPubMedGoogle Scholar
  49. Nakamura H, Kuroda T, Wakita M, Kusunoki M, Kato A, Mikami A, Sakata H, Itoh K (2001) From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J Neurosci 21(20):8174–8187PubMedGoogle Scholar
  50. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  51. Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8(7):315–324CrossRefPubMedGoogle Scholar
  52. Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44(13):2647–2667CrossRefPubMedGoogle Scholar
  53. Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973CrossRefPubMedGoogle Scholar
  54. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424CrossRefPubMedGoogle Scholar
  55. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRefPubMedGoogle Scholar
  56. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vis Res 41(10–11):1321–1332CrossRefPubMedGoogle Scholar
  57. Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723CrossRefPubMedGoogle Scholar
  58. Schaafsma SJ, Duysens J, Gielen CC (1997) Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Vis Neurosci 14(4):633–646CrossRefPubMedGoogle Scholar
  59. Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physiol 551(Pt 2):551–561CrossRefPubMedGoogle Scholar
  60. Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94(2):1372–1384CrossRefPubMedGoogle Scholar
  61. Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26(19):5098–5108CrossRefPubMedGoogle Scholar
  62. Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343CrossRefPubMedGoogle Scholar
  63. Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144CrossRefPubMedGoogle Scholar
  64. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893CrossRefPubMedGoogle Scholar
  65. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354CrossRefPubMedGoogle Scholar
  66. Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588CrossRefPubMedGoogle Scholar
  67. Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13(11):488–495CrossRefPubMedGoogle Scholar
  68. Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94(2):1358–1371CrossRefPubMedGoogle Scholar
  69. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18(10):3816–3830PubMedGoogle Scholar
  70. Smith AT, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23(2):561–569CrossRefPubMedGoogle Scholar
  71. Stenbacka L, Vanni S (2007) fMRI of peripheral visual field representation. Clin Neurophysiol 118(6):1303–1314CrossRefPubMedGoogle Scholar
  72. Stiers P, Peeters R, Lagae L, Van Hecke P, Sunaert S (2006) Mapping multiple visual areas in the human brain with a short fMRI sequence. Neuroimage 29(1):74–89CrossRefPubMedGoogle Scholar
  73. Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127(4):355–370CrossRefPubMedGoogle Scholar
  74. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27(20):5326–5337CrossRefPubMedGoogle Scholar
  75. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, New York, NY, USAGoogle Scholar
  76. Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W (2004) Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 21(2):593–600CrossRefPubMedGoogle Scholar
  77. Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375(6527):139–141CrossRefPubMedGoogle Scholar
  78. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078PubMedGoogle Scholar
  79. Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMedGoogle Scholar
  80. Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7(7):690–701CrossRefPubMedGoogle Scholar
  81. Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577CrossRefPubMedGoogle Scholar
  82. von Pfostl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P (2009) Motion sensitivity of human V6: a magnetoencephalography study. Neuroimage 45(4):1253–1263CrossRefGoogle Scholar
  83. Wade AR, Brewer AA, Rieger JW, Wandell BA (2002) Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci 357(1424):963–973CrossRefPubMedGoogle Scholar
  84. Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27(10):2747–2757CrossRefPubMedGoogle Scholar
  85. Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383CrossRefPubMedGoogle Scholar
  86. Zhang T, Britten KH (2004) Clustering of selectivity for optic flow in the ventral intraparietal area. NeuroReport 15(12):1941–1945CrossRefPubMedGoogle Scholar
  87. Zhang T, Heuer HW, Britten KH (2004) Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42(6):993–1001CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Randolph F. Helfrich
    • 1
    • 2
    • 3
  • Hubertus G.T. Becker
    • 2
    • 3
  • Thomas Haarmeier
    • 1
    Email author
  1. 1.Department of NeurologyRWTH Aachen UniversityAachenGermany
  2. 2.Department of Cognitive Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  3. 3.Department of General Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany

Personalised recommendations