Brain Topography

, Volume 25, Issue 3, pp 272–284 | Cite as

A Pool of Pairs of Related Objects (POPORO) for Investigating Visual Semantic Integration: Behavioral and Electrophysiological Validation

  • Lyudmyla Y. Kovalenko
  • Maximilien Chaumon
  • Niko A. BuschEmail author
Original Paper


Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)—a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors’ website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.


Semantic congruency Object recognition GLM N300 Similarity Shape matching 



This study was supported by the German Research Foundation (DFG; grant BU 2400/1-1).

Supplementary material

10548_2011_216_MOESM1_ESM.pdf (1.5 mb)
Supplementary material PDF (1545 KB)


  1. Auckland ME, Cave KR, Donnelly N (2007) Nontarget objects can influence perceptual processes during object recognition. Psychon Bull Rev 14(2):332–337PubMedCrossRefGoogle Scholar
  2. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5(8):617–629PubMedCrossRefGoogle Scholar
  3. Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38(2):347–358PubMedCrossRefGoogle Scholar
  4. Barrett SE, Rugg MD (1990) Event-related potentials and the semantic matching of pictures. Brain Cogn 14(2):201–212PubMedCrossRefGoogle Scholar
  5. Berkum JJAV, Brown CM, Zwitserlood P, Kooijman V, Hagoort P (2005) Anticipating upcoming words in discourse: evidence from ERPs and reading times. J Exp Psychol Learn Mem Cogn 31(3):443–467PubMedCrossRefGoogle Scholar
  6. Biederman I, Mezzanotte RJ, Rabinowitz JC (1982) Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14(2):143–177PubMedCrossRefGoogle Scholar
  7. Block CK, Baldwin CL (2010) Cloze probability and completion norms for 498 sentences: behavioral and neural validation using event-related potentials. Behav Res Methods 42(3):665–670PubMedCrossRefGoogle Scholar
  8. Bloom PA, Fischler I (1980) Completion norms for 329 sentence contexts. Mem Cogn 8(6):631–642CrossRefGoogle Scholar
  9. Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820PubMedCrossRefGoogle Scholar
  10. Busch NA, Herrmann CS, Müller MM, Lenz D, Gruber T (2006) A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm. Neuroimage 33(4):1169–1177PubMedCrossRefGoogle Scholar
  11. Celesia G (1993) Visual evoked potentials and electroretinograms. In: Niedermeyer E, Lopes Da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 911–936Google Scholar
  12. Davenport JL, Potter MC (2004) Scene consistency in object and background perception. Psychol Sci 15(8):559–564PubMedCrossRefGoogle Scholar
  13. Federmeier KD (2007) Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology 44(4):491–505PubMedCrossRefGoogle Scholar
  14. Federmeier KD, Kutas M (2002) Picture the difference: electrophysiological investigations of picture processing in the two cerebral hemispheres. Neuropsychologia 40(7):730–747PubMedCrossRefGoogle Scholar
  15. Field A (2009) Discovering statistics Using SPSS (introducing statistical methods series). Sage, Beverly HillsGoogle Scholar
  16. Fründ I, Busch NA, Körner U, Schadow J, Herrmann CS (2007) EEG oscillations in the gamma and alpha range respond differently to spatial frequency. Vision Res 47(15):2086–2098PubMedCrossRefGoogle Scholar
  17. Ganis G, Kutas M (2003) An electrophysiological study of scene effects on object identification. Brain Res Cogn Brain Res 16(2):123–144PubMedCrossRefGoogle Scholar
  18. Ganis G, Kutas M, Sereno M (1996) The search for “common sense”: an electrophysiological study of the comprehension of words and pictures in reading. J Cogn Neurosci 8(2):89–106CrossRefGoogle Scholar
  19. Gaspar CM, Rousselet GA, Pernet CR (2011) Reliability of ERP and single-trial analyses. Neuroimage 58(2):620–629PubMedCrossRefGoogle Scholar
  20. Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10(1):14–23PubMedCrossRefGoogle Scholar
  21. Hamm JP, Johnson BW, Kirk IJ (2002) Comparison of the N300 and N400 ERPs to picture stimuli in congruent and incongruent contexts. Clin Neurophysiol 113(8):1339–1350PubMedCrossRefGoogle Scholar
  22. Hauk O, Davis MH, Ford M, Pulvermüller F, Marslen-Wilson WD (2006) The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage 30(4):1383–1400PubMedCrossRefGoogle Scholar
  23. Holcomb PJ, McPherson WB (1994) Event-related brain potentials reflect semantic priming in an object decision task. Brain Cogn 24(2):259–276PubMedCrossRefGoogle Scholar
  24. Hollingworth A, Henderson JM (1999) Object identification is isolated from scene semantic constraint: evidence from object type and token discrimination. Acta Psychol (Amst) 102(2–3):319–343CrossRefGoogle Scholar
  25. Kiebel SJ, Friston KJ (2004) Statistical parametric mapping for event-related potentials: I. Generic considerations. Neuroimage 22(2):492–502PubMedCrossRefGoogle Scholar
  26. Kiefer M, Brendel D (2006) Attentional modulation of unconscious “automatic” processes: evidence from event-related potentials in a masked priming paradigm. J Cogn Neurosci 18(2):184–198PubMedCrossRefGoogle Scholar
  27. Knebel J, Toepel U, Hudry J, le Coutre J, Murray MM (2008) Generating controlled image sets in cognitive neuroscience research. Brain Topogr 20(4):284–289PubMedCrossRefGoogle Scholar
  28. Kouider S, Dehaene S (2007) Levels of processing during non-conscious perception: a critical review of visual masking. Philos Trans R Soc Lond B Biol Sci 362(1481):857–875PubMedCrossRefGoogle Scholar
  29. Kutas M, Federmeier KD (2000) Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn Sci 4(12):463–470Google Scholar
  30. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647PubMedCrossRefGoogle Scholar
  31. Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207(4427):203–205PubMedCrossRefGoogle Scholar
  32. Kutas M, Hillyard SA (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307(5947):161–163PubMedCrossRefGoogle Scholar
  33. Lau EF, Phillips C, Poeppel D (2008) A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci 9(12):920–933PubMedCrossRefGoogle Scholar
  34. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299PubMedCrossRefGoogle Scholar
  35. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190PubMedCrossRefGoogle Scholar
  36. McPherson WB, Holcomb PJ (1999) An electrophysiological investigation of semantic priming with pictures of real objects. Psychophysiology 36(1):53–65PubMedCrossRefGoogle Scholar
  37. Mudrik L, Lamy D, Deouell LY (2010) ERP evidence for context congruity effects during simultaneous object-scene processing. Neuropsychologia 48(2):507–517PubMedCrossRefGoogle Scholar
  38. Nigam A, Hoffman J, Simons R (1992) N400 to semantically anomalous pictures and words. J Cogn Neurosci 4(1):15–22CrossRefGoogle Scholar
  39. Nolan H, Whelan R, Reilly RB (2010) Faster: fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods 192(1):152–162PubMedCrossRefGoogle Scholar
  40. Oliva A, Torralba A (2007) The role of context in object recognition. Trends Cogn Sci 11(12):520–527PubMedCrossRefGoogle Scholar
  41. Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data. Comput Intell Neurosci 2011:831,409Google Scholar
  42. Poynton C (2003) Digital video and HDTV: algorithms and interfaces. Morgan Kaufmann, San FranciscoGoogle Scholar
  43. Reiss JE, Hoffman JE (2006) Object substitution masking interferes with semantic processing: evidence from event-related potentials. Psychol Sci 17(12):1015–1020PubMedCrossRefGoogle Scholar
  44. Rousselet GA, Pernet CR, Bennett PJ, Sekuler AB (2008) Parametric study of EEG sensitivity to phase noise during face processing. BMC Neurosci 9:98PubMedCrossRefGoogle Scholar
  45. Schadow J, Lenz D, Thaerig S, Busch NA, Fründ I, Rieger JW, Herrmann CS (2007) Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. Int J Psychophysiol 66(1):28–36PubMedCrossRefGoogle Scholar
  46. Schwanenflugel P, LaCount K (1988) Semantic relatedness and the scope of facilitation for upcoming words in sentences. J Exp Psychol Learn Mem Cogn 14(2):344CrossRefGoogle Scholar
  47. Sitnikova T, Holcomb PJ, Kiyonaga KA, Kuperberg GR (2008) Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. J Cogn Neurosci 20(11):2037–2057PubMedCrossRefGoogle Scholar
  48. Stenberg G, Lindgren M, Johansson M, Olsson A, Rosén I (2000) Semantic processing without conscious identification: evidence from event-related potentials. J Exp Psychol Learn Mem Cogn 26(4):973–1004PubMedCrossRefGoogle Scholar
  49. Vogel EK, Luck SJ, Shapiro KL (1998) Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol Hum Percept Perform 24(6):1656–1674PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lyudmyla Y. Kovalenko
    • 1
    • 2
  • Maximilien Chaumon
    • 2
  • Niko A. Busch
    • 2
    • 3
    Email author
  1. 1.International Graduate Program Medical NeurosciencesCharité University Medicine BerlinBerlinGermany
  2. 2.Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Institute of Medical PsychologyCharité University Medicine BerlinBerlinGermany

Personalised recommendations