Brain Topography

, Volume 25, Issue 2, pp 194–204 | Cite as

Discriminating Male and Female Voices: Differentiating Pitch and Gender

Original Paper

Abstract

Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial–temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27–63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

Keywords

ERPs Voice Auditory Frequency N1 P2 

Notes

Acknowledgments

Marianne Latinus gratefully acknowledges the salary support from the Fondation pour la Recherche Médicale. We thank Dr. Nancy J. Lobaugh for her generosity in allowing us full access to her ERP lab, and the help provided with the studies by Dr. Lobaugh and Erin Gibson. The authors also want to thank Dr. Rufin VanRullen for constructive comments on the manuscript.

References

  1. Alho K, Teder W, Lavikainen J, Naatanen R (1994) Strongly focused attention and auditory event-related potentials. Biol Psychol 38(1):73–90PubMedCrossRefGoogle Scholar
  2. Andrews ML, Schmidt CP (1997) Gender presentation: perceptual and acoustical analyses of voice. J Voice 11(3):307–313PubMedCrossRefGoogle Scholar
  3. Bedard C, Belin P (2004) A “voice inversion effect?”. Brain Cogn 55(2):247–249PubMedCrossRefGoogle Scholar
  4. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403(6767):309–312PubMedCrossRefGoogle Scholar
  5. Belin P, Zatorre RJ, Ahad P (2002) Human temporal-lobe response to vocal sounds. Brain Res Cogn Brain Res 13(1):17–26PubMedCrossRefGoogle Scholar
  6. Berkovits I, Hancock GR, Nevitt J (2000) Bootstrap resampling approaches for repeated measure designs: relative robustness to sphericity and normality violations. Educ Psychol Measur 60(6):877–892CrossRefGoogle Scholar
  7. Boersma P, Weenick D (2001) Praat, a system for doing phonetics by computer. Glot Int 5(9/10):341–345Google Scholar
  8. Cellerino A, Borghetti D, Sartucci F (2004) Sex differences in face gender recognition in humans. Brain Res Bull 63(6):443–449 Google Scholar
  9. Charest I, Pernet CR, Rousselet GA, Quinones I, Latinus M, Fillion-Bilodeau S, Chartrand JP, Belin P (2009) Electrophysiological evidence for an early processing of human voices. BMC Neurosci 10:127. doi: 10.1186/1471-2202-10-127 PubMedCrossRefGoogle Scholar
  10. Crottaz-Herbette S, Ragot R (2000) Perception of complex sounds: N1 latency codes pitch and topography codes spectra. Clin Neurophysiol 111(10):1759–1766PubMedCrossRefGoogle Scholar
  11. De Lucia M, Clarke S, Murray MM (2010) A temporal hierarchy for conspecific vocalization discrimination in humans. J Neurosci 30(33):11210–11221. doi: 10.1523/JNEUROSCI.2239-10.2010 PubMedCrossRefGoogle Scholar
  12. Fort A, Delpuech C, Pernier J, Giard MH (2002) Early auditory-visual interactions in human cortex during nonredundant target identification. Brain Res Cogn Brain Res 14(1):20–30PubMedCrossRefGoogle Scholar
  13. Fu QJ, Chinchilla S, Galvin JJ (2004) The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users. J Assoc Res Otolaryngol 5(3):253–260PubMedCrossRefGoogle Scholar
  14. Ghazanfar AA, Rendall D (2008) Evolution of human vocal production. Curr Biol 18(11):R457–R460PubMedCrossRefGoogle Scholar
  15. Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11(5):473–490PubMedCrossRefGoogle Scholar
  16. Gunji A, Koyama S, Ishii R, Levy D, Okamoto H, Kakigi R, Pantev C (2003) Magnetoencephalographic study of the cortical activity elicited by human voice. Neurosci Lett 348(1):13–16PubMedCrossRefGoogle Scholar
  17. Hillenbrand J, Getty LA, Clark MJ, Wheeler K (1995) Acoustic characteristics of American english vowels. J Acoust Soc Am 97:3099–3111PubMedCrossRefGoogle Scholar
  18. Jacobson GP, Lombardi DM, Gibbens ND, Ahmad BK, Newman CW (1992) The effects of stimulus frequency and recording site on the amplitude and latency of multichannel cortical auditory evoked potential (CAEP) component N1. Ear Hear 13(5):300–306PubMedCrossRefGoogle Scholar
  19. Latinus M, Belin P (2011) Human voice perception. Curr Biol 21(4):R143–R145. doi: 10.1016/j.cub.2010.12.033 PubMedCrossRefGoogle Scholar
  20. Latinus M, VanRullen R, Taylor MJ (2010) Top-down and bottom-up modulation in processing bimodal face/voice stimuli. BMC Neurosci 11:36. doi: 10.1186/1471-2202-11-36 PubMedCrossRefGoogle Scholar
  21. Lattner S, Maess B, Wang Y, Schauer M, Alter K, Friederici AD (2003) Dissociation of human and computer voices in the brain: evidence for a preattentive gestalt-like perception. Hum Brain Mapp 20(1):13–21PubMedCrossRefGoogle Scholar
  22. Lattner S, Meyer ME, Friederici AD (2005) Voice perception: sex, pitch, and the right hemisphere. Hum Brain Mapp 24(1):11–20PubMedCrossRefGoogle Scholar
  23. Lavner Y, Gath I, Rosenhouse J (2000) The effects of acoustic modifications on the identification of familiar voices speaking isolated vowels. Speech Commun 30:9–26CrossRefGoogle Scholar
  24. Levy DA, Granot R, Bentin S (2001) Processing specificity for human voice stimuli: electrophysiological evidence. Neuroreport 12(12):2653–2657PubMedCrossRefGoogle Scholar
  25. Levy DA, Granot R, Bentin S (2003) Neural sensitivity to human voices: ERP evidence of task and attentional influences. Psychophysiology 40(2):291–305PubMedCrossRefGoogle Scholar
  26. Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92(3):204–214PubMedCrossRefGoogle Scholar
  27. Mullennix JW, Johnson KA, Topcu-Durgun M, Farnsworth LM (1995) The perceptual representation of voice gender. J Acoust Soc Am 98(6):3080–3095PubMedCrossRefGoogle Scholar
  28. Murry T, Singh S (1980) Multidimensional analysis of male and female voices. J Acoust Soc Am 68(5):1294–1300PubMedCrossRefGoogle Scholar
  29. Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425PubMedCrossRefGoogle Scholar
  30. Näätänen R, Sams M, Alho K, Paavilainen P, Reinikainen K, Sokolov EN (1988) Frequency and location specificity of the human vertex N1 wave. Electroencephalogr Clin Neurophysiol 69(6):523–531PubMedCrossRefGoogle Scholar
  31. Neelon MF, Williams J, Garell PC (2006) The effects of auditory attention measured from human electrocorticograms. Clin Neurophysiol 117(3):504–521PubMedCrossRefGoogle Scholar
  32. Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, Elbert T (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94(1):26–40PubMedCrossRefGoogle Scholar
  33. Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data. Comput Intell Neurosci 2011:831409. doi: 10.1155/2011/831409 PubMedGoogle Scholar
  34. Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK (2008) A voice region in the monkey brain. Nat Neurosci 11(3):367–374PubMedCrossRefGoogle Scholar
  35. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2):127–152Google Scholar
  36. Rogier O, Roux S, Belin P, Bonnet-Brilhault F, Bruneau N (2010) An electrophysiological correlate of voice processing in 4- to 5-year-old children. Int J Psychophysiol 75(1):44–47. doi: 10.1016/j.ijpsycho.2009.10.013 PubMedCrossRefGoogle Scholar
  37. Rousselet GA, Husk JS, Pernet CR, Gaspar CM, Bennett PJ, Sekuler AB (2009) Age-related delay in information accrual for faces: evidence from a parametric, single-trial EEG approach. BMC Neurosci 10:114PubMedCrossRefGoogle Scholar
  38. Schweinberger SR (2001) Human brain potential correlates of voice priming and voice recognition. Neuropsychologia 39(9):921–936PubMedCrossRefGoogle Scholar
  39. Schweinberger SR, Casper C, Hauthal N, Kaufmann JM, Kawahara H, Kloth N, Robertson DM, Simpson AP, Zaske R (2008) Auditory adaptation in voice perception. Curr Biol 18(9):684–688PubMedCrossRefGoogle Scholar
  40. Scott SK, Blank CC, Rosen S, Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123(Pt 12):2400–2406PubMedCrossRefGoogle Scholar
  41. Sokhi DS, Hunter MD, Wilkinson ID, Woodruff PW (2005) Male and female voices activate distinct regions in the male brain. Neuroimage 27(3):572–578PubMedCrossRefGoogle Scholar
  42. Tiitinen H, Sivonen P, Alku P, Virtanen J, Naatanen R (1999) Electromagnetic recordings reveal latency differences in speech and tone processing in humans. Brain Res Cogn Brain Res 8(3):355–363PubMedCrossRefGoogle Scholar
  43. von Kriegstein K, Eger E, Kleinschmidt A, Giraud AL (2003) Modulation of neural responses to speech by directing attention to voices or verbal content. Brain Res Cogn Brain Res 17(1):48–55CrossRefGoogle Scholar
  44. Whiteside SP (1998) Identification of a speaker’s sex: a study of vowels. Percept Mot Skills 86(2):579–584PubMedCrossRefGoogle Scholar
  45. Wilcox RR (2005) Introduction to robust estimation and hypothesis testing, 2d edn. Academic Press, San DiegoGoogle Scholar
  46. Yamaguchi MK, Hirukawa T, Kanazawa S (1995) Judgment of gender through facial parts. Perception 24(5):563–575Google Scholar
  47. Zaske R, Schweinberger SR, Kaufmann JM, Kawahara H (2009) In the ear of the beholder: neural correlates of adaptation to voice gender. Eur J Neurosci 30(3):527–534PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculté de Médecine de Rangueil, CerCoUniversité Toulouse 3-CNRSToulouseFrance
  2. 2.Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUnited Kingdom
  3. 3.Diagnostic Imaging and Research InstituteHospital for Sick ChildrenTorontoCanada

Personalised recommendations