Advertisement

Brain Topography

, Volume 24, Issue 1, pp 65–77 | Cite as

Abnormal ERD/ERS but Unaffected BOLD Response in Patients with Unverricht–Lundborg Disease During Index Extension: A Simultaneous EEG-fMRI Study

  • E. Visani
  • L. Minati
  • L. Canafoglia
  • I. Gilioli
  • A. Granvillano
  • G. Varotto
  • D. Aquino
  • P. Fazio
  • M. G. Bruzzone
  • S. Franceschetti
  • F. Panzica
Original Paper

Abstract

Electrophysiological studies indicate that Unverricht–Lundborg’s disease (ULD), the most common form of progressive myoclonus epilepsy in Europe, is characterized by the involvement of multiple cortical regions in degenerative changes that lead to enhanced excitation and deficient inhibition. We searched for the haemodynamic correlates of these effects using functional MRI (fMRI) of self-paced index extensions, a well-accepted task highlighting significant differences. EEG and fMRI were simultaneously acquired in 11 ULD patients and 16 controls, performing the index extensions individually (event-related task) as well as repetitively (block task). ERD/ERS analysis was performed for the EEG data in the alpha and beta bands. fMRI time-series were analyzed using the traditional general linear model, as well as with an assumption-free approach, and by means of cross-region correlations representing functional connectivity. In line with the existing literature, ULD patients had enhanced desynchronization in the alpha band and reduced post-movement synchronization in the beta band. By contrast, fMRI did not reveal any difference between the two groups; there were no activation intensity, latency or extent effects, no significant engagement of additional regions, and no changes to functional connectivity. We conclude that, so long as the patients are executing a task which does not induce obvious action myoclonus, the hypothesized abnormalities in pyramidal neuron and interneuron dynamics are relatively subtle, embodied in processes which are not metabolically-demanding and take place at a time-scale invisible to fMRI.

Keywords

Unverricht–Lundborg disease ERD/ERS analysis Simultaneous EEG-fMRI 

Notes

Acknowledgments

This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-F5-2008-201076. The authors are grateful to Lucia Salvatoni for outstanding technical assistance during EEG data acquisition. The authors would also like to thank two anonymous reviewers for the insightful feedback they provided on an earlier draft.

References

  1. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artefact and a method for its subtraction. Neuroimage 8(3):229–239PubMedCrossRefGoogle Scholar
  2. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artefact from continuous EEG recorded during functional MRI. Neuroimage 12(2):230–239PubMedCrossRefGoogle Scholar
  3. Ashby P, Chen R, Wennberg R, Lozano AM, Lang AE (1999) Cortical reflex myoclonus studied with cortical electrodes. Clin Neurophysiol 110(9):1521–1530PubMedCrossRefGoogle Scholar
  4. Baumann S, Griffiths TD, Rees A, Hunter D, Sun L, Thiele A (2010) Characterisation of the BOLD response time course at different levels of the auditory pathway in non-human primates. Neuroimage 50(3):1099–1108PubMedCrossRefGoogle Scholar
  5. Berkovic SF, Andermann F, Carpenter S, Wolfe LS (1986) Progressive myoclonus epilepsies: specific causes and diagnosis. N Engl J Med 315(5):296–305PubMedCrossRefGoogle Scholar
  6. Bhatia KP, Brown P, Gregory R, Lennox GG, Manji H, Thompson PD, Ellison DW, Marsden CD (1995) Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum. Brain 118(Pt 5):1087–1093PubMedCrossRefGoogle Scholar
  7. Brown P, Farmer SF, Halliday DM, Marsden J, Rosenberg JR (1999) Coherent cortical and muscle discharge in cortical myoclonus. Brain 122(Pt 3):461–472PubMedCrossRefGoogle Scholar
  8. Canafoglia L, Ciano C, Visani E, Anversa P, Panzica F, Viri M, Gennaro E, Zara F, Madia F, Franceschetti S (2010) Short and long interval cortical inhibition in patients with Unverricht–Lundborg and Lafora body disease. Epilepsy Res 89(2–3):232–237PubMedCrossRefGoogle Scholar
  9. Cunningham CJ, Zaamout Mel F, Goodyear B, Federico P (2008) Simultaneous EEG-fMRI in human epilepsy. Can J Neurol Sci 35(4):420–435PubMedGoogle Scholar
  10. Debener S, Ullsperger M, Siegel M, Engel AK (2006) Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10(12):558–563PubMedCrossRefGoogle Scholar
  11. Deshpande G, LaConte S, James GA, Peltier S, Hu X (2009) Multivariate Granger causality analysis of fMRI data. Hum Brain Mapp 30(4):1361–1373PubMedCrossRefGoogle Scholar
  12. Engel J Jr (1998) Classifications of the International League Against Epilepsy: time for reappraisal. Epilepsia 39(9):1014–1017PubMedCrossRefGoogle Scholar
  13. Formaggio E, Storti SF, Avesani M, Cerini R, Milanese F, Gasparini A, Acler M, Pozzi Mucelli R, Fiaschi A, Manganotti P (2008) EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement. Brain Topogr 21(2):100–111PubMedCrossRefGoogle Scholar
  14. Forss N, Silén T, Karjalainen T (2001) Lack of activation of human secondary somatosensory cortex in Unverricht–Lundborg type of progressive myoclonus epilepsy. Ann Neurol 49(1):90–97PubMedCrossRefGoogle Scholar
  15. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711PubMedCrossRefGoogle Scholar
  16. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7(1):30–40PubMedCrossRefGoogle Scholar
  17. Friston KJ, Harisson L, Penny W (2003) Dynamic causal modelling. Neuroimage 19(4):1273–1302PubMedCrossRefGoogle Scholar
  18. Gray MA, Minati L, Harrison NA, Gianaros PJ, Napadow V, Critchley HD (2009) Physiological recordings: basic concepts and implementation during functional magnetic resonance imaging. Neuroimage 47(3):1105–1115PubMedCrossRefGoogle Scholar
  19. Hallett M, Chadwick D, Marsden CD (1979) Cortical reflex myoclonus. Neurology 29(8):1107–1125PubMedGoogle Scholar
  20. Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17(2):234–242 (Epub 20 Feb. Review)Google Scholar
  21. Hummel F, Andres F, Altenmüller E, Dichgans J, Gerloff C (2002) Inhibitory control of acquired motor programmes in the human brain. Brain 125(Pt 2):404–420PubMedCrossRefGoogle Scholar
  22. Ioannides AA (2007) Dynamic functional connectivity. Curr Opin Neurobiol 17(2):161–170PubMedCrossRefGoogle Scholar
  23. Joensuu T, Lehesjoki AE, Kopra O (2008) Molecular background of EPM1-Unverricht–Lundborg disease. Epilepsia 49(4):557–563PubMedCrossRefGoogle Scholar
  24. Kälviäinen R, Khyuppenen J, Koskenkorva P, Eriksson K, Vanninen R, Mervaala E (2008) Clinical picture of EPM1-Unverricht–Lundborg disease. Epilepsia 49(4):549–556PubMedCrossRefGoogle Scholar
  25. Lehesjoki AE, Koskiniemi M (1999) Progressive myoclonus epilepsy of Unverricht–Lundborg type. Epilepsia 40(Suppl 3):23–28 (Review)PubMedCrossRefGoogle Scholar
  26. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878 (Review)PubMedCrossRefGoogle Scholar
  27. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157PubMedCrossRefGoogle Scholar
  28. Magaudda A, Gelisse P, Genton P (2004) Antimyoclonic effect of levetiracetam in 13 patients with Unverricht–Lundborg disease: clinical observation. Epilepsia 45(6):678–681PubMedCrossRefGoogle Scholar
  29. Manganotti P, Tamburin S, Zanette G, Fiaschi A (2001) Hyperexcitable cortical responses in progressive myoclonic epilepsy: a TMS study. Neurology 57(10):1793–1799PubMedGoogle Scholar
  30. Nahab FB, Hallett M (2010) Current role of functional MRI in the diagnosis of movement disorders. Neuroimaging Clin N Am 20(1):103–110PubMedCrossRefGoogle Scholar
  31. Panzica F, Canafoglia L, Franceschetti S, Binelli S, Ciano C, Visani E, Avanzini G (2003) Movement-activated myoclonus in genetically defined progressive myoclonic epilepsies: EEG–EMG relationship estimated using autoregressive models. Clin Neurophysiol 114(6):1041–1052PubMedCrossRefGoogle Scholar
  32. Parkes LM, Bastiaansen MC, Norris DG (2005) Combining EEG and fMRI to investigate the post-movement beta rebound. Neuroimage 29(3):685–696 (Epub 19 Oct)Google Scholar
  33. Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, Virtaneva K, Miao J, D’Amato E, Ramirez L, Faham M, Koskiniemi M, Warrington JA, Norio R, de la Chapelle A, Cox DR, Myers RM (1996) Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271(5256):1731–1734PubMedCrossRefGoogle Scholar
  34. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187PubMedCrossRefGoogle Scholar
  35. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/EMG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857PubMedCrossRefGoogle Scholar
  36. Pfurtscheller G, Stancák A Jr, Neuper C (1996) Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98(4):281–293PubMedCrossRefGoogle Scholar
  37. Ramachandran N, Girard JM, Turnbull J, Minassian BA (2009) The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 50(Suppl 5):29–36PubMedCrossRefGoogle Scholar
  38. Rau C, Plewnia C, Hummel F, Gerloff C (2003) Event-related desynchronization and excitability of the ipsilateral motor cortex during simple self-paced finger movements. Clin Neurophysiol 114(10):1819–1826PubMedCrossRefGoogle Scholar
  39. Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30(6):823–838PubMedCrossRefGoogle Scholar
  40. Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30(4):1168–1187PubMedCrossRefGoogle Scholar
  41. Rothwell JC, Obeso JA, Marsden CD (1984) On the significance of giant somatosensory evoked potentials in cortical myoclonus. J Neurol Neurosurg Psychiatry 47(1):33–42PubMedCrossRefGoogle Scholar
  42. Salenius S, Hari R (2003) Synchronous cortical oscillatory activity during motor action. Curr Opin Neurobiol 13(6):678–684 (Review)PubMedCrossRefGoogle Scholar
  43. Shibasaki H (1995) Myoclonus. Curr Opin Neurol 8(4):331–334PubMedCrossRefGoogle Scholar
  44. Shibasaki H, Yamashita Y, Neshige R, Tobimatsu S, Fukui R (1985) Pathogenesis of giant somatosensory evoked potentials in progressive myoclonic epilepsy. Brain 108(Pt 1):225–240PubMedCrossRefGoogle Scholar
  45. Srinivasan R (2006) Anatomical constraints on source models for high-resolution EEG and MEG derived from MRI. Technol Cancer Res Treat 5(4):389–399PubMedGoogle Scholar
  46. Storti SF, Formaggio E, Beltramello A, Fiaschi A, Manganotti P (2010) Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration. Brain Topogr 23(1):46–57PubMedCrossRefGoogle Scholar
  47. Strangman G, Boas DA, Sutton JP (2002) Non-invasive neuroimaging using near-infrared light. Biol Psychiatry 1(52):679–693CrossRefGoogle Scholar
  48. Virtaneva K, D’Amato E, Miao J, Koskiniemi M, Norio R, Avanzini G, Franceschetti S, Michelucci R, Tassinari CA, Omer S, Pennacchio LA, Myers RM, Dieguez-Lucena JL, Krahe R, de la Chapelle A, Lehesjoki AE (1997) Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat Genet 15(4):393–396PubMedCrossRefGoogle Scholar
  49. Visani E, Agazzi P, Canafoglia L, Panzica F, Ciano C, Scaioli V, Avanzini G, Franceschetti S (2006) Movement-related desynchronization–synchronization (ERD/ERS) in patients with Unverricht–Lundborg disease. Neuroimage 33:161–168PubMedCrossRefGoogle Scholar
  50. Visani E, Minati L, Canafoglia L, Gilioli I, Salvatoni L, Varotto G, Fazio P, Aquino D, Bruzzone MG, Franceschetti S, Panzica F (2010) Simultaneous EEG-fMRI in patients with Unverricht–Lundborg disease: event-related desynchronization/synchronization and hemodynamic response analysis. Comput Intell Neurosci 164278. doi: 10.1155/2010/164278
  51. Westphal KP, Gro Èzinger B, Diekmann V, Kornhuber HH (1993) EEG-blocking before and during voluntary movements: differences between the eyes-closed and eyes-open condition. Arch Ital Biol 131:25–35PubMedGoogle Scholar
  52. Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B (2010) Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage 49(3):2596–2606PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Visani
    • 1
  • L. Minati
    • 2
    • 3
    • 4
  • L. Canafoglia
    • 1
  • I. Gilioli
    • 1
  • A. Granvillano
    • 1
  • G. Varotto
    • 1
    • 5
  • D. Aquino
    • 2
  • P. Fazio
    • 1
  • M. G. Bruzzone
    • 2
  • S. Franceschetti
    • 1
  • F. Panzica
    • 1
  1. 1.Department of NeurophysiologyFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly
  2. 2.Department of NeuroradiologyFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly
  3. 3.Scientific DepartmentFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly
  4. 4.Department of PsychiatryBrighton and Sussex Medical School (BSMS)FalmerUK
  5. 5.Department of BioengineeringPolitecnico di MilanoMilanItaly

Personalised recommendations