Advertisement

Brain Topography

, Volume 23, Issue 2, pp 214–220 | Cite as

Cortical Network Analysis in Patients Affected by Schizophrenia

  • Fabrizio De Vico FallaniEmail author
  • Antongiulio Maglione
  • Fabio Babiloni
  • Donatella Mattia
  • Laura Astolfi
  • Giovanni Vecchiato
  • Andrea De Rinaldis
  • Serenella Salinari
  • Ellie Pachou
  • Sifis Micheloyannis
Original Paper

Abstract

In the present study, we studied the structural changes of the brain functional network in a group of schizophrenic (SCHZ) patients during a 2-back working memory task. Cortical signals were obtained from scalp EEG signals through the high-resolution EEG technique, which relies on realistic head models and linear inverse solutions. Functional networks were estimated by computing the spectral coherence—i.e. a measure of synchronization in the frequency domain—between the time series of all the available cortical sources. To analyze those cortical networks we followed a theoretical graph approach by computing the network density as the total number of links and the node degree as the number of links of each cortical source. The major result suggest that in the Alpha2 frequency band (11–13 Hz) the cortical functional networks of the SCHZ patients present the largest differences when compared with those of a group of control (CTRL) subjects. In particular, the structure of the SCHZ network altered radically during the memory task, as the number of links that were different from the REST condition increased sensibly with respect to the CTRL network. In addition, a compensatory mechanism was found in the SCHZ patients during the correct performance of the memory task where the node degree showed a frontal asymmetry with higher activation of the left frontal lobe—i.e. higher number of connections—in the Alpha2 frequency band.

Keywords

High-resolution EEG Functional connectivity Graph theory Schizophrenia 

Notes

Acknowledgment

This study was performed with the support of the COST EU project NEUROMATH (BM 0601).

References

  1. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PloS Comput Biol 3(2):e17CrossRefPubMedGoogle Scholar
  2. Babiloni F, Babiloni C, Locche L, Cincotti F, Rossini PM, Carducci F (2000) High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Med Biol Eng Comput 38:512–519CrossRefPubMedGoogle Scholar
  3. Bachman P, Kimb J, Yerac CM, Thermand S, Manninend M, Lönnqvist J, Kapriode J, Huttunend MO, Näätänenfg R, Cannonac TD (2008) Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia. Schizophr Res 103:293–297CrossRefPubMedGoogle Scholar
  4. Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, Heimans JJ, van Dijk BW, de Munck JC, de Jongh A, Cover KS, Stam CJ (2006) Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117:2039–2049CrossRefPubMedGoogle Scholar
  5. Bassett DS, Meyer-Linderberg A, Achard S, Duke Th, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. PNAS 103:19518–19523CrossRefPubMedGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Blyler CR, Gold JM (2000) Cognitive effects of typical antipsychotic treatment: another look in cognitive deficits in schizophrenia. Schizophr Res 46:139–148CrossRefGoogle Scholar
  8. Bor D, Duncan J, Wiseman RJ, Owen AM (2003) Encoding strategies dissociate prefrontal activity from working memory demand. NEURON 37(2):361–367CrossRefPubMedGoogle Scholar
  9. De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28:1334–1336CrossRefPubMedGoogle Scholar
  10. De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Tocci A, Salinari S, Witte H, Hesse W, Gao S, Colosimo A, Babiloni F (2008) Cortical network dynamics during foot movements. Neuroinformatics 6(1):23–34CrossRefPubMedGoogle Scholar
  11. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102CrossRefPubMedGoogle Scholar
  12. Gevins A, Le J, Martin N, Brickett P, Desmond J, Reutter B (1994) High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol 39:337–358Google Scholar
  13. Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DJ (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25:60–69CrossRefPubMedGoogle Scholar
  14. Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882CrossRefPubMedGoogle Scholar
  15. Jonides J, Schumacher EH, Smith EE, Koeppe RA, Awh E, Reuter-Lorenz PA, Marshuer C, Willis CR (1998) The role of the parietal cortex in the verbal working memory. J Neurosci 18:5026–5034PubMedGoogle Scholar
  16. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195CrossRefPubMedGoogle Scholar
  17. Klimesch W, Doppelmayr M, Pachinger T, Russegger H (1997) Event-related desynchronization in the alpha band and the processing of semantic information. Cogn Brain Res 6(2):83–94CrossRefGoogle Scholar
  18. Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761CrossRefPubMedGoogle Scholar
  19. Langers DRM, Jansen JFA, Backes WH (2007) Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate. Neuroimage 38:43–56CrossRefPubMedGoogle Scholar
  20. Le J, Gevins A (1993) A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Trans Biomed Eng 40:517–528CrossRefPubMedGoogle Scholar
  21. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophr Res 60(2–3):285–298CrossRefPubMedGoogle Scholar
  22. Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006a) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277CrossRefPubMedGoogle Scholar
  23. Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006b) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66CrossRefPubMedGoogle Scholar
  24. Neubauer AC, Fink A (2003) Fluid intelligence and neural efficiency: effects of task complexity and sex. Pers Individ Dif 35:811–827CrossRefGoogle Scholar
  25. Pertides M, Pandya DN (1984) Projections to the frontal cortex from the parietal region in the rhesus monkey. J Comp Neurol 228:105–116CrossRefGoogle Scholar
  26. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4):918–927CrossRefPubMedGoogle Scholar
  27. Rappelsberger R, Petsche H (1988) Probability mapping: power and coherence analyses of cognitive processes. Brain Topogr 1(1):46–54CrossRefPubMedGoogle Scholar
  28. Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53(1):1–31CrossRefPubMedGoogle Scholar
  29. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342CrossRefPubMedGoogle Scholar
  30. Sporns O (2002) Graph theory methods for the analysis of neural connectivity patterns. In: Kötter R (ed) Neuroscience databases. A practical guide. Kluwer, Boston, pp 171–186Google Scholar
  31. Sporns O, Zwi J (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162CrossRefPubMedGoogle Scholar
  32. Sporns O, Tononi G, Edelman GE (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922CrossRefPubMedGoogle Scholar
  33. Stam CJ (2000) Brain dynamics in theta and alpha frequency bands and working memory performance in humans. Neurosci Lett 286(2):115–118CrossRefPubMedGoogle Scholar
  34. Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28CrossRefPubMedGoogle Scholar
  35. Stam CJ, Jones BF, Manshanden I, van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32:1335–1344CrossRefPubMedGoogle Scholar
  36. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99CrossRefPubMedGoogle Scholar
  37. Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355:111–126CrossRefGoogle Scholar
  38. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276CrossRefPubMedGoogle Scholar
  39. Sun FT, Miller LM, D’Esposito M (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21(2):647–658CrossRefPubMedGoogle Scholar
  40. Surguladze SA, Chu EM, Evans AS (2007) The effect of long-acting risperidone on working memory in schizophrenia: a functional magnetic resonance imaging study. J Clin Psychopharmacol 27:560–570CrossRefPubMedGoogle Scholar
  41. Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037CrossRefPubMedGoogle Scholar
  42. Tregellas JR, Tanabe JL, Miller DE, Freedman R (2002) Monitoring eye movements during fMRI tasks with echo planar images. Hum Brain Mapp 17(4):237–243CrossRefPubMedGoogle Scholar
  43. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50(11):825–844CrossRefPubMedGoogle Scholar
  44. Wink AM, Roerdink JBTM (2004) Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing. IEEE Trans Med Imaging 23(3):374–387CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fabrizio De Vico Fallani
    • 1
    • 2
    Email author
  • Antongiulio Maglione
    • 1
  • Fabio Babiloni
    • 2
  • Donatella Mattia
    • 1
  • Laura Astolfi
    • 1
    • 3
  • Giovanni Vecchiato
    • 2
  • Andrea De Rinaldis
    • 1
  • Serenella Salinari
    • 3
  • Ellie Pachou
    • 4
  • Sifis Micheloyannis
    • 4
  1. 1.IRCCS “Fondazione Santa Lucia”RomeItaly
  2. 2.Department of Human Physiology and Pharmacology“Sapienza” UniversityRomeItaly
  3. 3.Department of Computer and Systems Science“Sapienza” UniversityRomeItaly
  4. 4.Medical Division, Widen LaboratoryUniversity of CreeteIraklionGreece

Personalised recommendations