Brain Topography

, Volume 22, Issue 2, pp 97–108 | Cite as

Pre-attentive Spectro-temporal Feature Processing in the Human Auditory System

  • Tino ZaehleEmail author
  • Lutz Jancke
  • Christoph S. Herrmann
  • Martin Meyer
Original Paper


In the present study, we investigated the pre-attentive processing of low-level acoustic properties and the impact of this mechanism on functional lateralization in the human auditory system. Mismatch negativity (MMN) of the event-related potentials (ERP) were recorded in 19 adult humans who passively listened to a standard stimulus and spectrally and temporally deviant sounds. We predicted modulations of the MMN amplitude in response to spectrally and temporally graded deviants. Based on recent models of functional hemispheric lateralisation, we further hypothesized a left-lateralized source of the MMN in response to temporal deviants and, in contrast, a right-lateralized source of the MMN in response to spectral deviants. In agreement with our hypothesis, we showed that spectrally and temporally deviant sounds lead to robust MMNs recorded from frontocentral scalp electrodes. The amplitudes of the MMNs were modulated by the grade of spectral and temporal deviation from the standard sound. Furthermore, by using an assumption-free source localization approach (LORETA) we demonstrated functionally lateralized activations with dominance of the right hemisphere for the processing of spectral characteristics and of the left hemisphere for the processing of temporal acoustic properties. Results of our study further contribute to the ongoing debate on the role of low-level acoustic feature perception in functional hemispheric lateralization in the context of auditory and speech processing. Our data indicate that the pre-attentive feature-specific deviant processing is mediated by partly distinct neural subsystems for temporal and spectral information.


EEG MMN Auditory spectral processing Temporal processing Functional lateralization 



The authors wish to thank Dr. Thomas Jacobsen and Marcus Cheetham, as well as three anonymous reviewers for their helpful comments on previous version of the manuscript. This work was supported by Swiss National Science Foundation Grant No.: 320000-120661/1.


  1. Babajani-Feremi A, Soltanian-Zadeh H, Moran JE (2008) Integrated MEG/fMRI model validated using real auditory data. Brain Topogr. 21:61–74PubMedCrossRefGoogle Scholar
  2. Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10:536–540PubMedCrossRefGoogle Scholar
  3. Bertoli S, Heimberg S, Smurzynski J, Probst R (2001) Mismatch negativity and psychoacoustic measures of gap detection in normally hearing subjects. Psychophysiology 38:334–342PubMedCrossRefGoogle Scholar
  4. Bertoli S, Smurzynski J, Probst R (2002) Temporal resolution in young and elderly subjects as measured by mismatch negativity and a psychoacoustic gap detection task. Clin. Neurophysiol. 113:396–406PubMedCrossRefGoogle Scholar
  5. Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci. 8:389–395PubMedCrossRefGoogle Scholar
  6. Caclin A, Brattico E, Tervaniemi M, Naatanen R, Morlet D, Giard MH, McAdams S (2006) Separate neural processing of timbre dimensions in auditory sensory memory. J Cogn Neurosci 18:1959–1972PubMedCrossRefGoogle Scholar
  7. Desjardins RN, Trainor LJ, Hevenor SJ, Polak CP (1999) Using mismatch negativity to measure auditory temporal resolution thresholds. NeuroReport 10:2079–2082PubMedCrossRefGoogle Scholar
  8. Dick F, Saygin AP, Galati G, Pitzalis S, Bentrovato S, D’Amico S, Wilson S, Bates E, Pizzamiglio L (2007) What is involved and what is necessary for complex linguistic and nonlinguistic auditory processing: evidence from functional magnetic resonance imaging and lesion data. J Cogn Neurosci 19:799–816PubMedCrossRefGoogle Scholar
  9. Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schroger E (2003) Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence. Neuroimage 20:1270–1282PubMedCrossRefGoogle Scholar
  10. Efron R (1963) Temporal perception, Aphasia and Déjà vu. Brain 86:403–424PubMedCrossRefGoogle Scholar
  11. Escera C, Alho K, Winkler I, Naatanen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604PubMedCrossRefGoogle Scholar
  12. Escera C, Alho K, Schroger E, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166PubMedCrossRefGoogle Scholar
  13. Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right-left asymmetrics in the brain. Science 199:852–856PubMedCrossRefGoogle Scholar
  14. Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRefGoogle Scholar
  15. Giraud K, Demonet JF, Habib M, Marquis P, Chauvel P, Liegeois-Chauvel C (2005) Auditory evoked potential patterns to voiced and voiceless speech sounds in adult developmental dyslexics with persistent deficits. Cereb Cortex 15:1524–1534PubMedCrossRefGoogle Scholar
  16. Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134PubMedCrossRefGoogle Scholar
  17. Gottselig JM, Brandeis D, Hofer-Tinguely G, Borbely AA, Achermann P (2004) Human central auditory plasticity associated with tone sequence learning. Learn Mem 11:162–171PubMedCrossRefGoogle Scholar
  18. Grimm S, Schroger E (2007) The processing of frequency deviations within sounds: evidence for the predictive nature of the Mismatch Negativity (MMN) system. Restor Neurol Neurosci 25:241–249PubMedGoogle Scholar
  19. Grimm S, Roeber U, Trujillo-Barreto NJ, Schroger E (2006) Mechanisms for detecting auditory temporal and spectral deviations operate over similar time windows but are divided differently between the two hemispheres. Neuroimage 32:275–282PubMedCrossRefGoogle Scholar
  20. Hagmann P, Cammoun L, Martuzzi R, Maeder P, Clarke S, Thiran JP, Meuli R (2006) Hand preference and sex shape the architecture of language networks. Hum Brain Mapp 27:828–835PubMedCrossRefGoogle Scholar
  21. Horvath J, Czigler I, Jacobsen T, Maess B, Schroger E, Winkler I (2008) MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology 45:60–69PubMedGoogle Scholar
  22. Jacobsen T, Schroger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727PubMedCrossRefGoogle Scholar
  23. Jamison HL, Watkins KE, Bishop DV, Matthews PM (2006) Hemispheric specialization for processing auditory nonspeech stimuli. Cereb Cortex 16:1266–1275PubMedCrossRefGoogle Scholar
  24. Jancke L, Wustenberg T, Scheich H, Heinze HJ (2002) Phonetic perception and the temporal cortex. Neuroimage 15:733–746PubMedCrossRefGoogle Scholar
  25. Jankowiak S, Berti S (2007) Behavioral and event-related potential distraction effects with regularly occurring auditory deviants. Psychophysiology 44:79–85PubMedCrossRefGoogle Scholar
  26. Johnsrude IS, Penhune VB, Zatorre RJ (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123(Pt 1):155–163PubMedCrossRefGoogle Scholar
  27. Liegeois-Chauvel C, de Graaf JB, Laguitton V, Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex 9:484–496PubMedCrossRefGoogle Scholar
  28. Meyer M (2008) Functions of the left and right posterior temporal lobes during segmental and suprasegmental speech perception. Zeitschrift für Neuropsychologie 19:101–115CrossRefGoogle Scholar
  29. Meyer M, Alter K, Friederici AD, Lohmann G, von Cramon DY (2002) FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum Brain Mapp 17:73–88PubMedCrossRefGoogle Scholar
  30. Meyer M, Zaehle T, Gountouna VE, Barron A, Jancke L, Turk A (2005) Spectro-temporal processing during speech perception involves left posterior auditory cortex. NeuroReport 16:1985–1989PubMedCrossRefGoogle Scholar
  31. Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551PubMedCrossRefGoogle Scholar
  32. Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94PubMedCrossRefGoogle Scholar
  33. Naatanen R, Alho K (1995a) Mismatch negativity—a unique measure of sensory processing in audition. Int J Neurosci 80:317–337PubMedCrossRefGoogle Scholar
  34. Naatanen R, Alho K (1995b) Generators of electrical and magnetic mismatch responses in humans. Brain Topogr 7:315–320PubMedCrossRefGoogle Scholar
  35. Naatanen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144PubMedCrossRefGoogle Scholar
  36. Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590PubMedCrossRefGoogle Scholar
  37. Nicholls ME (1996) Temporal processing asymmetries between the cerebral hemispheres: evidence and implications. Laterality 1:97–137PubMedCrossRefGoogle Scholar
  38. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRefGoogle Scholar
  39. Obleser J, Rockstroh B, Eulitz C (2004) Gender differences in hemispheric asymmetry of syllable processing: left-lateralized magnetic N100 varies with syllable categorization in females. Psychophysiology 41:783–788PubMedCrossRefGoogle Scholar
  40. Obleser J, Eisner F, Kotz SA (2008) Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J Neurosci 28:8116–8123PubMedCrossRefGoogle Scholar
  41. Opitz B, Mecklinger A, von Cramon DY, Kruggel F (1999) Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology 36:142–147PubMedCrossRefGoogle Scholar
  42. Overath T, Kumar S, von KK, Griffiths TD (2008) Encoding of spectral correlation over time in auditory cortex. J Neurosci 28:13268–13273PubMedCrossRefGoogle Scholar
  43. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65PubMedCrossRefGoogle Scholar
  44. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95PubMedGoogle Scholar
  45. Phillips DP, Smith JC (2004) Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners. Perception 33:371–378PubMedCrossRefGoogle Scholar
  46. Phillips DP, Taylor TL, Hall SE, Carr MM, Mossop JE (1997) Detection of silent intervals between noises activating different perceptual channels: some properties of “central” auditory gap detection. J Acoust Soc Am 101:3694–3705PubMedCrossRefGoogle Scholar
  47. Phillips DP, Hall SE, Harrington IA, Taylor TL (1998) “Central” auditory gap detection: a spatial case. J Acoust Soc Am 103:2064–2068PubMedCrossRefGoogle Scholar
  48. Phillips C, Rugg MD, Friston KJ (2002a) Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. Neuroimage 16:678–695PubMedCrossRefGoogle Scholar
  49. Phillips C, Rugg MD, Fristont KJ (2002b) Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage 17:287–301PubMedCrossRefGoogle Scholar
  50. Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139PubMedCrossRefGoogle Scholar
  51. Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693CrossRefGoogle Scholar
  52. Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255CrossRefGoogle Scholar
  53. Poeppel D, Yellin E, Phillips C, Roberts TP, Rowley HA, Wexler K, Marantz A (1996) Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds. Brain Res Cogn Brain Res 4:231–242PubMedCrossRefGoogle Scholar
  54. Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30:823–838PubMedCrossRefGoogle Scholar
  55. Ross ED (1981) The aprosodias. Functional-anatomic organization of the affective components of language in the right hemisphere. Arch Neurol 38:561–569PubMedGoogle Scholar
  56. Sams M, Paavilainen P, Alho K, Naatanen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62:437–448PubMedCrossRefGoogle Scholar
  57. Schmidt CF, Zaehle T, Meyer M, Geiser E, Boesiger P, Jancke L (2008) Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task. Hum Brain Mapp 29:46–56PubMedCrossRefGoogle Scholar
  58. Schonwiesner M, Rubsamen R, von Cramon DY (2005) Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. Eur J NeuroSci 22:1521–1528PubMedCrossRefGoogle Scholar
  59. Schroger E, Wolff C (1996) Mismatch response of the human brain to changes in sound location. NeuroReport 7:3005–3008PubMedCrossRefGoogle Scholar
  60. Schroger E, Wolff C (1998) Attentional orienting and reorienting is indicated by human event-related brain potentials. NeuroReport 9:3355–3358PubMedGoogle Scholar
  61. Scott SK, Blank CC, Rosen S, Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123(Pt 12):2400–2406PubMedCrossRefGoogle Scholar
  62. Shahin AJ, Roberts LE, Miller LM, McDonald KL, Alain C (2007) Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds. Brain Topogr 20:55–61PubMedCrossRefGoogle Scholar
  63. Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Skudlarski P, Fulbright RK, Bronen RA, Fletcher JM, Shankweiler DP, Katz L (1995) Sex differences in the functional organization of the brain for language. Nature 373:607–609PubMedCrossRefGoogle Scholar
  64. Shtyrov Y, Kujala T, Palva S, Ilmoniemi RJ, Naatanen R (2000) Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres. Neuroimage 12:657–663PubMedCrossRefGoogle Scholar
  65. Sieroka N, Dosch HG, Specht HJ, Rupp A (2003) Additional neuromagnetic source activity outside the auditory cortex in duration discrimination correlates with behavioural ability. Neuroimage 20:1697–1703PubMedCrossRefGoogle Scholar
  66. Sommer IE, Aleman A, Bouma A, Kahn RS (2004) Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies. Brain 127:1845–1852PubMedCrossRefGoogle Scholar
  67. Sommer IE, Aleman A, Somers M, Boks MP, Kahn RS (2008) Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Res 1206:76–88PubMedCrossRefGoogle Scholar
  68. Studdert-Kennedy M, Shankweiler D (1981) Hemispheric specialization for language processes. Science 211:960–961PubMedCrossRefGoogle Scholar
  69. Talairach J, Tournoux P (1988) Co-palanar stereotaxis atlas of the human brain. Thieme, New YorkGoogle Scholar
  70. Tervaniemi M, Winkler I, Naatanen R (1997) Pre-attentive categorization of sounds by timbre as revealed by event-related potentials. NeuroReport 8:2571–2574PubMedCrossRefGoogle Scholar
  71. Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, Naatanen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9:330–336PubMedCrossRefGoogle Scholar
  72. Trainor LJ, Samuel SS, Desjardins RN, Sonnadara RR (2001) Measuring temporal resolution in infants using mismatch negativity. NeuroReport 12:2443–2448PubMedCrossRefGoogle Scholar
  73. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398PubMedCrossRefGoogle Scholar
  74. Uther M, Jansen DH, Huotilainen M, Ilmoniemi RJ, Naatanen R (2003) Mismatch negativity indexes auditory temporal resolution: evidence from event-related potential (ERP) and event-related field (ERF) recordings. Brain Res Cogn Brain Res 17:685–691PubMedCrossRefGoogle Scholar
  75. Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256PubMedCrossRefGoogle Scholar
  76. Von Steinbuchel N (1998) Temporal ranges of central nervous processing: clinical evidence. Exp Brain Res 123:220–233CrossRefGoogle Scholar
  77. Vouloumanos A, Kiehl KA, Werker JF, Liddle PF (2001) Detection of sounds in the auditory stream: event-related fMRI evidence for differential activation to speech and nonspeech. J Cogn Neurosci 13:994–1005PubMedCrossRefGoogle Scholar
  78. Wallentin M (2009) Putative sex differences in verbal abilities and language cortex: a critical review. Brain Lang 108:175–183PubMedCrossRefGoogle Scholar
  79. Weintraub S, Mesulam MM, Kramer L (1981) Disturbances in prosody. A right-hemisphere contribution to language. Arch Neurol 38:742–744PubMedGoogle Scholar
  80. Wetzel W, Ohl FW, Scheich H (2008) Global versus local processing of frequency-modulated tones in gerbils: an animal model of lateralized auditory cortex functions. Proc Natl Acad Sci USA 105:6753–6758PubMedCrossRefGoogle Scholar
  81. Woods DL (1990) The physiological basis of selective attention: Implications of event-related potential studies. In: Rohrbaugh JW, Parasuraman R, Johnson R Jr (eds) Event-related potentials: basic issues and applications. Oxford University Press, New York, pp 178–209Google Scholar
  82. Yabe H, Tervaniemi M, Reinikainen K, Naatanen R (1997) Temporal window of integration revealed by MMN to sound omission. NeuroReport 8:1971–1974PubMedCrossRefGoogle Scholar
  83. Zaehle T, Wustenberg T, Meyer M, Jancke L (2004) Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. Eur J NeuroSci 20:2447–2456PubMedCrossRefGoogle Scholar
  84. Zaehle T, Jancke L, Meyer M (2007a) Electrical brain imaging evidences left auditory cortex involvement in speech and non-speech discrimination based on temporal features. Behav Brain Funct 3:63PubMedCrossRefGoogle Scholar
  85. Zaehle T, Schmidt CF, Meyer M, Baumann S, Baltes C, Boesiger P, Jancke L (2007b) Comparison of “silent” clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks. Neuroimage 37:1195–1204PubMedCrossRefGoogle Scholar
  86. Zaehle T, Geiser E, Alter K, Jancke L, Meyer M (2008) Segmental processing in the human auditory dorsal stream. Brain Res 1220:179–190PubMedCrossRefGoogle Scholar
  87. Zatorre RJ (1988) Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 84:566–572PubMedCrossRefGoogle Scholar
  88. Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953PubMedCrossRefGoogle Scholar
  89. Zatorre RJ, Gandour JT (2008) Neural specializations for speech and pitch: moving beyond the dichotomies. Philos Trans R Soc Lond B Biol Sci 363:1087–1104PubMedCrossRefGoogle Scholar
  90. Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tino Zaehle
    • 1
    Email author
  • Lutz Jancke
    • 2
  • Christoph S. Herrmann
    • 1
  • Martin Meyer
    • 2
  1. 1.Department of Biological PsychologyOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of NeuropsychologyUniversity of ZurichZurichSwitzerland

Personalised recommendations