Brain Topography

, 22:249 | Cite as

Combining TMS and EEG Offers New Prospects in Cognitive Neuroscience

Original Paper


The combination of brain stimulation by transcranial magnetic stimulation (TMS) with simultaneous electroencephalographic (EEG) imaging has become feasible due to recent technical developments. The TMS-EEG integration provides real-time information on cortical reactivity and connectivity through the analysis of TMS-evoked potentials (TEPs), and how functional activity links to behavior through the study of TMS-induced modulations thereof. It reveals how these effects vary as a function of neuronal state, differing between individuals and patient groups but also changing rapidly over time during task performance. This review discusses the wide range of possible TMS-EEG applications and what new information may be gained using this technique on the dynamics of brain functions, hierarchical organization, and cortical connectivity, as well as on TMS action per se. An advance in the understanding of these issues is timely and promises to have a substantial impact on many areas of clinical and basic neuroscience.


Transcranial magnetic stimulation (TMS) Electroencephalography (EEG) TMS-evoked potential (TEP) Cognition Functional imaging 



We thank Debora Brignani and Domenica Veniero for useful discussions.


  1. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107CrossRefPubMedGoogle Scholar
  2. Bender S, Basseler K, Sebastian I, Resch F, Kammer T, Oelkers-Ax R, Weisbrod M (2005) Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials. Ann Neurol 58:58–67CrossRefPubMedGoogle Scholar
  3. Bonato C, Miniussi C, Rossini PM (2006) Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clin Neurophysiol 117:1699–1707CrossRefPubMedGoogle Scholar
  4. Brignani D, Manganotti P, Rossini PM, Miniussi C (2008) Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum Brain Mapp 29:603–612CrossRefPubMedGoogle Scholar
  5. Cappa SF, Sandrini M, Rossini PM, Sosta K, Miniussi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723PubMedGoogle Scholar
  6. Dohrmann K, Weisz N, Schlee W, Hartmann T, Elbert T (2007) Neurofeedback for treating tinnitus. Prog Brain Res 1660:473–485CrossRefGoogle Scholar
  7. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480CrossRefPubMedGoogle Scholar
  8. Harris JA, Clifford CW, Miniussi C (2008) The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? J Cogn Neurosci 20:734–740CrossRefPubMedGoogle Scholar
  9. Hill AC, Davey NJ, Kennard C (2000) Current orientation induced by magnetic stimulation influences a cognitive task. NeuroReport 11:3257–3259CrossRefPubMedGoogle Scholar
  10. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8:3537–3540CrossRefPubMedGoogle Scholar
  11. Ives JR, Rotenberg A, Poma R, Thut G, Pascual-Leone A (2006) Electroencephalographic recording during transcranial magnetic stimulation in humans and animals. Clin Neurophysiol 117:1870–1875CrossRefPubMedGoogle Scholar
  12. Kahkonen S, Ilmoniemi RJ (2004) Transcranial magnetic stimulation: applications for neuropsychopharmacology. J Psychopharmacol 18:257–261CrossRefPubMedGoogle Scholar
  13. Kahkonen S, Kesaniemi M, Nikouline VV, Karhu J, Ollikainen M, Holi M, Ilmoniemi RJ (2001) Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage 14:322–328CrossRefPubMedGoogle Scholar
  14. Kahkonen S, Wilenius J, Nikulin VV, Ollikainen M, Ilmoniemi RJ (2003) Alcohol reduces prefrontal cortical excitability in humans: a combined TMS and EEG study. Neuropsychopharmacology 28:747–754CrossRefPubMedGoogle Scholar
  15. Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 24:955–960CrossRefPubMedGoogle Scholar
  16. Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J NeuroSci 17:1129–1133CrossRefPubMedGoogle Scholar
  17. Komssi S, Kahkonen S (2006) The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Rev 52:183–192CrossRefPubMedGoogle Scholar
  18. Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184CrossRefPubMedGoogle Scholar
  19. Komssi S, Kahkonen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21:154–164CrossRefPubMedGoogle Scholar
  20. Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318PubMedGoogle Scholar
  21. Lepage JF, Saint-Amour D, Théoret H (2008) EEG and neuronavigated single-pulse TMS in the study of the observation/execution matching system: are both techniques measuring the same process? J Neurosci Methods 175:17–24CrossRefPubMedGoogle Scholar
  22. Lioumis P, Kicic D, Savolainen P, Makela JP, Kahkonen S (2009) Reproducibility of TMS-Evoked EEG responses. Hum Brain Mapp (in press)Google Scholar
  23. Marzi CA, Miniussi C, Maravita A, Bertolasi L, Zanette G, Rothwell JC, Sanes JN (1998) Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuo-motor information in humans. Exp Brain Res 118:435–438CrossRefPubMedGoogle Scholar
  24. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232CrossRefPubMedGoogle Scholar
  25. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Olivieri M, Pascual-Leone A, Paulus W, Priori A, Walsh V (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulation 1:326–336CrossRefGoogle Scholar
  26. Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 110:1325–1328CrossRefPubMedGoogle Scholar
  27. Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J NeuroSci 18:1206–1212CrossRefPubMedGoogle Scholar
  28. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237CrossRefPubMedGoogle Scholar
  29. Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616PubMedGoogle Scholar
  30. Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990PubMedGoogle Scholar
  31. Pleger B, Blankenburg F, Bestmann S, Ruff CC, Wiech K, Stephan KE, Friston KJ, Dolan RJ (2006) Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. J Neurosci 26:1945–1952CrossRefPubMedGoogle Scholar
  32. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008a) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018CrossRefPubMedGoogle Scholar
  33. Romei V, Rihs T, Brodbeck V, Thut G (2008b) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. NeuroReport 19:203–208CrossRefPubMedGoogle Scholar
  34. Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, Battistini N, Lucking CH, Kristeva-Feige R (2000) Effects of repetitive transcranial magnetic stimulation on movement-relatedcortical activity in humans. Cereb Cortex 10:802–808CrossRefPubMedGoogle Scholar
  35. Rossi S, Cappa SF, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, Babiloni F, Rossini PM (2001) Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nat Neurosci 4:948–952CrossRefPubMedGoogle Scholar
  36. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488CrossRefPubMedGoogle Scholar
  37. Ruff CC, Bestmann S, Blankenburg F, Bjoertomt O, Josephs O, Weiskopf N, Deichmann R, Driver J (2008) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb Cortex 18:817–827CrossRefPubMedGoogle Scholar
  38. Ruohonen J, Ilmoniemi RJ (1999) Modeling of the stimulating field generation in TMS. Electroencephalogr Clin Neurophysiol Suppl 51:30–40PubMedGoogle Scholar
  39. Sack AT, Linden DE (2003) Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res Brain Res Rev 43:41–56CrossRefPubMedGoogle Scholar
  40. Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308:702–704CrossRefPubMedGoogle Scholar
  41. Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, Baudewig J (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17:2841–2852CrossRefPubMedGoogle Scholar
  42. Sack AT, Kadosh RC, Schuhmann T, Moerel M, Walsh V, Goebel R (2009) Optimizing functional accuracy of tms in cognitive studies: a comparison of methods. J Cogn Neurosci (in press)Google Scholar
  43. Sauseng P, Klimesch W, Gerloff C, Hummel FC (2008) Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia 47:31–44Google Scholar
  44. Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113CrossRefPubMedGoogle Scholar
  45. Shapiro KA, Pascual-Leone A, Mottaghy FM, Gangitano M, Caramazza A (2001) Grammatical distinctions in the left frontal cortex. J Cogn Neurosci 13:713–720CrossRefPubMedGoogle Scholar
  46. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J NeuroSci 25:1874–1881CrossRefPubMedGoogle Scholar
  47. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65; 111–125Google Scholar
  48. Taylor PC, Nobre AC, Rushworth MF (2007a) FEF TMS affects visual cortical activity. Cereb Cortex 17:391–399CrossRefPubMedGoogle Scholar
  49. Taylor PC, Nobre AC, Rushworth MF (2007b) Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J Neurosci 27:11343–11353CrossRefPubMedGoogle Scholar
  50. Taylor PC, Walsh V, Eimer M (2008) Combining TMS and EEG to study cognitive function and cortico-cortico interactions. Behav Brain Res 191:141–147CrossRefPubMedGoogle Scholar
  51. Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci (in press)Google Scholar
  52. Thut G, Northoff G, Ives JR, Kamitani Y, Pfennig A, Kampmann F, Schomer DL, Pascual-Leone A (2003) Effects of single-pulse transcranial magnetic stimulation (TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol 114:2071–2080CrossRefPubMedGoogle Scholar
  53. Thut G, Ives JR, Kampmann F, Pastor MA, Pascual-Leone A (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Methods 141:207–217CrossRefPubMedGoogle Scholar
  54. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502CrossRefPubMedGoogle Scholar
  55. Virtanen J, Ruohonen J, Naatanen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37:322–326CrossRefPubMedGoogle Scholar
  56. Wagner T, Gangitano M, Romero R, Theoret H, Kobayashi M, Anschel D, Ives J, Cuffin N, Schomer D, Pascual-Leone A (2004) Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain. Neurosci Lett 354:91–94CrossRefPubMedGoogle Scholar
  57. Wagner T, Fregni F, Eden U, Ramos-Estebanez C, Grodzinsky A, Zahn M, Pascual-Leone A (2006) Transcranial magnetic stimulation and stroke: a computer-based human model study. Neuroimage 30:857–870CrossRefPubMedGoogle Scholar
  58. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79CrossRefPubMedGoogle Scholar
  59. Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation: a neurochronometrics of mind. Mit Press, Cambridge, MassachusettsGoogle Scholar
  60. Walsh V, Ellison A, Battelli L, Cowey A (1998) Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proc Biol Sci 265:537–543CrossRefPubMedGoogle Scholar
  61. Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736CrossRefPubMedGoogle Scholar
  62. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biomedical Sciences and Biotechnology, National Institute of Neuroscience-ItalyUniversity of BresciaBresciaItaly
  2. 2.Cognitive Neuroscience Section, IRCCS San Giovanni di Dio FatebenefratelliBresciaItaly
  3. 3.Centre for Cognitive NeuroImaging, Department of PsychologyUniversity of GlasgowGlasgowUK

Personalised recommendations