Brain Topography

, Volume 22, Issue 2, pp 119–133 | Cite as

Characterizing Dynamic Functional Connectivity Across Sleep Stages from EEG

  • Stavros I. Dimitriadis
  • Nikolaos A. Laskaris
  • Yolanda Del Rio-Portilla
  • George Ch. Koudounis
Original Paper

Abstract

Following a nonlinear dynamics approach, we investigated the emergence of functional clusters which are related with spontaneous brain activity during sleep. Based on multichannel EEG traces from 10 healthy subjects, we compared the functional connectivity across different sleep stages. Our exploration commences with the conjecture of a small-world patterning, present in the scalp topography of the measured electrical activity. The existence of such a communication pattern is first confirmed for our data and then precisely determined by means of two distinct measures of non-linear interdependence between time-series. A graph encapsulating the small-world network structure along with the relative interdependence strength is formed for each sleep stage and subsequently fed to a suitable clustering procedure. Finally the delineated graph components are comparatively presented for all stages revealing novel attributes of sleep architecture. Our results suggest a pivotal role for the functional coupling during the different stages and indicate interesting dynamic characteristics like its variable hemispheric asymmetry and the isolation between anterior and posterior cortical areas during REM.

Keywords

Sleep EEG Small-world network Synchronization likelihood Nonlinear interdependence Graph theoretic clustering Variational information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedCrossRefGoogle Scholar
  2. Astola J, Haavisto P, Neuvo Y (1990) Vector median filters. Proc IEEE 78:678–689CrossRefGoogle Scholar
  3. Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89:054101PubMedCrossRefGoogle Scholar
  4. Bertini M, Ferrara M, Gennaro L, Curcio G, Moroni F, Vecchio F, Gasperis M, Rossini PM, Babiloni C (2007) Directional information flows between brain hemispheres during presleep wake and early sleep stages. Cereb Cortex 17:1970–1978PubMedCrossRefGoogle Scholar
  5. Breakspear M, Williams L, Stam CJ (2004) A novel method for the topographic analysis of neural activity reveals formation and dissolution of “Dynamic Cell Assemblies”. J Comput Neurosci 16:49–69PubMedCrossRefGoogle Scholar
  6. Corsi-Cabrera M, Miró E, del-Río-Portilla Y, Pérez-Garci E, Villanueva Y, Guevara MA (2003) Rapid eye movement sleep dreaming is characterized by uncoupled EEG activity between frontal and perceptual cortical regions. Brain Cogn 51:337–345PubMedCrossRefGoogle Scholar
  7. Corsi-Cabrera M, Muñoz-Torres Z, del Río Portilla Y, Guevara MA (2006) Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness. Int J Psychophysiol 60(1):59–66PubMedCrossRefGoogle Scholar
  8. Ferri R, Rundo F, Brunt O, Terzano MG, Stam CJ (2007) Small-world network organization of functional connectivity of EEG slow wave activity during sleep. Clin Neurophysiol 118:449–456PubMedCrossRefGoogle Scholar
  9. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140PubMedCrossRefGoogle Scholar
  10. Friston KJ (2000a) The labile brain. I. Neuronal transients and nonlinear coupling. Phil Trans R Soc Lond B 355:215–236CrossRefGoogle Scholar
  11. Friston KJ (2000b) The labile brain. II. Transients, complexity and selection. Phil Trans R Soc Lond B 355:237–252CrossRefGoogle Scholar
  12. Friston KJ (2000c) The labile brain. III. Transients and spatio-temporal receptive fields. Phil Trans R Soc Lond B 355:253–265CrossRefGoogle Scholar
  13. Fujisaka H, Yamada T (1983) Stability theory of synchronized motion in coupled-oscillator systems. Prog Theor Phys 69:32–47CrossRefGoogle Scholar
  14. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–348CrossRefGoogle Scholar
  15. Gray C, Koenig P, Engel A, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337PubMedCrossRefGoogle Scholar
  16. Guevara-Perez MA, Ramos-Loyo J, Hernández-González M, Madera-Carrillo H, Corsi-Cabrera M (2000) CAPTUSEN:un sistema para la adquisición computarizada del EEG y los potenciales relacionados a eventos. Rev Mex Psychol 17:77–88Google Scholar
  17. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419PubMedCrossRefGoogle Scholar
  18. Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245PubMedCrossRefGoogle Scholar
  19. Ioannides AA (2006) Magnetoencephalography as a research tool in neuroscience: state of the art. Neuroscientist 12:524–544PubMedCrossRefGoogle Scholar
  20. Jeong J, Gore JC, Peterson BS (2001) Mutual information analysis of the EEG in patients withAlzheimer’s disease. ClinNeurophysiol 112:827–835Google Scholar
  21. Kajimura N, Uchiyama M, Takayama Y, Uchida S, Uema T, Kato M, Sekimoto M, Watanabe T, Nakajima T, Horikoshi S, Ogawa K, Nishikawa M, Hiroki M, Kudo Y, Matsuda H, Okawa M, Takahashi K (2002) Functional neuroanatomy of human non-rapid eye movement sleep: a study using a positron emission tomography. Int Congress Ser 1232:801–805CrossRefGoogle Scholar
  22. Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 87:198701Google Scholar
  23. Laskaris NA, Ioannides AA (2002) Semantic geodesic maps:a unifying geometrical approach for studying the structure and dynamics of single trial evoked responses. Clin Neurophysiol 113(8):1209–1226PubMedCrossRefGoogle Scholar
  24. Laskaris NA, Fotopoulos S, Ioannides AA (2004) Mining information from event-related recordings. IEEE SP Mag 21(3):66–77Google Scholar
  25. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701PubMedCrossRefGoogle Scholar
  26. Masuda N, Aihara K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90:302–309PubMedCrossRefGoogle Scholar
  27. Meila M (2007) Comparing clusterings-an information based distance. J Multivariate Anal 98:873–895CrossRefGoogle Scholar
  28. Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277PubMedCrossRefGoogle Scholar
  29. Pavan M, Pelillo M (2007) Dominant sets and pairwise clustering. IEEE Trans PAMI 29(1):167–172Google Scholar
  30. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824PubMedCrossRefGoogle Scholar
  31. Perez-Garci E, del Rio-Portilla Y, Guevara MA, Arce C, Corsi-Cabrera M (2001) Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions. Sleep 24:118–126PubMedGoogle Scholar
  32. Pikovsky AS (1984) On the interaction of strange attractors. Physik B 55:149–154Google Scholar
  33. Quiroga R Kraskov A Kreuz T, Grassberger P (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E (online) 65:041903Google Scholar
  34. Rechtschaffen A, Kales A (eds) (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Brain Information Service, Brain Research Institute, University of California, Lost Angeles, CAGoogle Scholar
  35. Roth C, Achermann P, Borbely AA (1999) Frequency and state specific hemispheric asymmetries in the human sleep EEG. Neurosci Lett 271:139–142PubMedCrossRefGoogle Scholar
  36. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI (1995) Generalized synchronization of chaos: the auxiliary system approach. Phys Rev E 51:980–994CrossRefGoogle Scholar
  37. Schultz JV, Hubert L (1976) A nonparametric test for the correspondence between two proximity matrices. J Educ Stat 1:59–67CrossRefGoogle Scholar
  38. Sporns O, Zwi J (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162PubMedCrossRefGoogle Scholar
  39. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425PubMedCrossRefGoogle Scholar
  40. Sporns O, Tononi G, Kotter R (2006) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:245–251Google Scholar
  41. Stam CJ, Van Dijk BW (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163:236–251CrossRefGoogle Scholar
  42. Stam CJ, Breakspear M, Cappellen Van, Van Walsum AM, Van Dijk BW (2004) Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum Brain Mapp 19:63–78CrossRefGoogle Scholar
  43. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99PubMedCrossRefGoogle Scholar
  44. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276PubMedCrossRefGoogle Scholar
  45. Takens F (1981) Detecting strange attractors in turbulence. Lect Notes Math 898:366–381CrossRefGoogle Scholar
  46. Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A 34:2427–2432PubMedCrossRefGoogle Scholar
  47. Watts DJ, Strogatz SH (1998) Collective dynamics of ‹small-world’networks. Nature 393:440–442PubMedCrossRefGoogle Scholar
  48. Werth E, Acherman P, Borbely A (1996) Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. NeuroReport 8:123–127PubMedCrossRefGoogle Scholar
  49. Werth E, Acherman P, Borbely A (1997) Fronto-occipital EEG power gradients in human sleep. J Sleep Res 6:102–112PubMedGoogle Scholar
  50. Yamada T, Fujisaka H (1983) Stability theory of synchronized motion in coupled-oscillator systems 2: the mapping approach”. Prog Theor Phys 70:1240–1248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stavros I. Dimitriadis
    • 1
  • Nikolaos A. Laskaris
    • 1
  • Yolanda Del Rio-Portilla
    • 2
  • George Ch. Koudounis
    • 3
  1. 1.Artificial Intelligence & Information Analysis Laboratory, Department of InformaticsAristotle UniversityThessalonikiGreece
  2. 2.Falcutad de PsicologiaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Cardiology DepartmentGeneral Hospital of KalamataKalamataGreece

Personalised recommendations