Brain Topography

, Volume 21, Issue 2, pp 100–111

EEG and fMRI Coregistration to Investigate the Cortical Oscillatory Activities During Finger Movement

  • Emanuela Formaggio
  • Silvia Francesca Storti
  • Mirko Avesani
  • Roberto Cerini
  • Franco Milanese
  • Anna Gasparini
  • Michele Acler
  • Roberto Pozzi Mucelli
  • Antonio Fiaschi
  • Paolo Manganotti
Original Paper

Abstract

Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during␣fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

Keywords

EEG BOLD ERD Alpha power Beta power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. NeuroImage 8(3):229–239PubMedCrossRefGoogle Scholar
  2. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239PubMedCrossRefGoogle Scholar
  3. Avesani M, Milanese F, Formaggio E, Gasparini A, Cerini R, Bongiovanni LG, Pozzi Mucelli R, Fiaschi A, Manganotti P (2008) Continuous EEG-fMRI in pre-surgical evaluation of a patient with symptomatic seizures: bold activation linked to interictal epileptic discharges caused by Cavernoma. Neuroradiol J 21(2):183–191Google Scholar
  4. Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia DL, Astolfi L et al (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage 24:118–131PubMedCrossRefGoogle Scholar
  5. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4241PubMedGoogle Scholar
  6. Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A et al (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS colocalisation with fMRI BOLD response in visual cortex. Neuroimage 26(1):302–308PubMedCrossRefGoogle Scholar
  7. Celsis P, Doyon B, Boulanouar K, Pastor J, Démonet JF, Nespoulous JL (1999) ERP correlates of phoneme perception in speech and sound contexts. Neuroreport 10(7):1523–1527PubMedCrossRefGoogle Scholar
  8. De Yoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 54:171–187CrossRefGoogle Scholar
  9. Erbil N, Ungan P (2007) Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements. Brain Res 1169:44–56PubMedCrossRefGoogle Scholar
  10. Friston KJ, Holmes AP, Worsely KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:173–181Google Scholar
  11. Goldman RI, Stern JM, Engel J, Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Neurophysiology 111:1974–1980CrossRefGoogle Scholar
  12. Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121(Pt 8):1513–1531PubMedCrossRefGoogle Scholar
  13. Gonçalves SI, de Munck JC, Pouwels PJW, Schoonhoven R, Kuijer JPA, Maurits NM et al (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage 30:203–213PubMedCrossRefGoogle Scholar
  14. Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20:44–49PubMedCrossRefGoogle Scholar
  15. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Neurophysiology 87:417–420Google Scholar
  16. Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D (2006) Post-movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings. Neuroimage 32:1281–1289PubMedCrossRefGoogle Scholar
  17. Kim SG, Ugurbil K (1997) Functional magnetic resonance imaging of the human brain. J Neurosci Methods 74:229–243PubMedCrossRefGoogle Scholar
  18. Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M (1997) Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol 104:199–206PubMedCrossRefGoogle Scholar
  19. Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magnet Resonan Med 38(6):943–952CrossRefGoogle Scholar
  20. Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P et al (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109(1):50–62PubMedCrossRefGoogle Scholar
  21. Manganotti P, Formaggio E, Milanese F, Gasparini A, Storti SF, Cerini R, Bongiovanni LG, Pozzi Mucelli R, Baraldo A, Fiaschi A, Avesani M (2008) Continuous EEG-fMRI study in patients with partial epilepsy and focal interictal slow-wave discharges on EEG. Magnet Resonan Imaging (in press)Google Scholar
  22. Menon V, Crottaz-Herbette S (2005) Combined EEG and fMRI studies of human brain function. Int Rev Neurobiol 66:291–321 [Review]PubMedCrossRefGoogle Scholar
  23. Muri RM, Felblinger J, Rosler KM, Jung B, Hesse CW, Boesch C (1998) Recording of electrical brain activity in a magnetic resonance environment: distorting effects of the static magnetic field. Magnet Resonan Med 39:18–22CrossRefGoogle Scholar
  24. Neuper C, Pfurtscheller G (1996) Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci Lett 216:17–20PubMedCrossRefGoogle Scholar
  25. Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474PubMedCrossRefGoogle Scholar
  26. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113Google Scholar
  27. Parkers LM, Bastiaansen CM, Norris DG (2006) Combining EEG and fMRI to investigate the post-movement beta rebound. Neuroimage 29:685–696CrossRefGoogle Scholar
  28. Pfurtscheller G, Aranibar A (1979) Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46: 138–146PubMedCrossRefGoogle Scholar
  29. Pfurtscheller G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83:62–69PubMedCrossRefGoogle Scholar
  30. Pfurtscheller G, Neuper C (1994) Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett 174:93–96PubMedCrossRefGoogle Scholar
  31. Rappelsberger P, Pfurtscheller G, Filz O (1994) Calculation of event-related coherence–a new method to study short-lasting coupling between brain areas. Brain Topogr 7:121–127PubMedCrossRefGoogle Scholar
  32. Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16(8):2691–2700PubMedGoogle Scholar
  33. Salmelin R, Hari R (1994) Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60:537–550PubMedCrossRefGoogle Scholar
  34. Singh KD, Barnes GR, Hillebrand A, Forde EME, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16:103–114PubMedCrossRefGoogle Scholar
  35. Stancak A Jr, Feige B, Lucking CH, Kristeva-Feige R (2000) Oscillatory cortical activity and movement-related potentials in proximal and distal movements. Clin Neurophysiol 111:636–650PubMedCrossRefGoogle Scholar
  36. Steriade M, Amzica F (1996) Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc Natl Acad Sci USA 93:2533–2538PubMedCrossRefGoogle Scholar
  37. Talairach J, Tournoux P (1998) Co-planar stereotaxic atlas of the human brain. Thieme: New York Google Scholar
  38. van Duinen H, Zijdewind I, Hoogduin H, Maurits N (2005) Surface EMG measurements during fMRI at 3T: accurate EMG recordings after artifact correction. NeuroImage 27(1):240–246PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Emanuela Formaggio
    • 1
    • 2
  • Silvia Francesca Storti
    • 1
  • Mirko Avesani
    • 1
  • Roberto Cerini
    • 3
  • Franco Milanese
    • 1
  • Anna Gasparini
    • 3
  • Michele Acler
    • 1
  • Roberto Pozzi Mucelli
    • 3
  • Antonio Fiaschi
    • 1
    • 4
  • Paolo Manganotti
    • 1
  1. 1.Section of Neurological Rehabilitation, Department of Neurological and Visual Sciences, “Gianbattista Rossi” HospitalUniversity of VeronaVeronaItaly
  2. 2.Department of Information EngineeringUniversity of PadovaPadovaItaly
  3. 3.Department of Morphologic and Biomedical Sciences, “Gianbattista Rossi” HospitalUniversity of VeronaVeronaItaly
  4. 4.IRCCS “San Camillo” HospitalVeniceItaly

Personalised recommendations