Brain Topography

, Volume 20, Issue 4, pp 249–264 | Cite as

Topographic ERP Analyses: A Step-by-Step Tutorial Review

  • Micah M. MurrayEmail author
  • Denis Brunet
  • Christoph M. Michel


In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.


Electroencephalography (EEG) Event-related potentials (ERPs) Topography Spatial Reference electrode Global field power Global dissimilarity Microstate segmentation 


  1. 1.
    Arzy S, Mohr C, Michel CM, Blanke O. Duration and not strength of activation in temporo-parietal cortex positively correlates with schizotypy. Neuroimage 2007;35:326–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Process Mag. 2001;18(16):14–30.Google Scholar
  3. 3.
    Brandeis D, Lehmann D. Event-related potentials of the brain and cognitive processes: approaches and applications. Neuropsychologia 1986;24:151–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Brandeis D, Lehmann D, Michel CM, Mingrone W. Mapping event-related brain potential microstates to sentence endings. Brain Topogr. 1995;8:145–59.PubMedCrossRefGoogle Scholar
  5. 5.
    De Lucia M, Michel CM, Clarke S, Murray MM. Single-subject EEG analysis based on topographic information. Int J Bioelectromagnet. 2007;9:168–71.Google Scholar
  6. 6.
    De Santis L, Spierer L, Clarke S, Murray MM. Getting in touch: segregated somatosensory ‹what’ and ‹where’ pathways in humans revealed by electrical neuroimaging. Neuroimage 2007;37:890–903.PubMedCrossRefGoogle Scholar
  7. 7.
    De Santis L, Clarke S, Murray MM. Automatic and intrinsic auditory ‹what’ and ‹where’ processing in humans revealed by electrical neuroimaging. Cereb Cortex. 2007;17:9–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Desmedt JE, Tomberg C, Noel P, Ozaki I. Beware of the average reference in brain mapping. Electroencephalogr Clin Neurophysiol Suppl. 1990;41:22–7.PubMedGoogle Scholar
  9. 9.
    Dien J. Issues in the application of the average reference: review, critiques, and recommendations. Behav Res Methods Instrum Comput. 1998;30:34–43.Google Scholar
  10. 10.
    Dien J, Santuzzi AM. Application of repeated measures ANOVA to high-density ERP datasets: a review and tutorial. In: Handy TC, editors. Event-related potentials: a methods handbook. Cambridge, MA: MIT Press; 2005. pp. 57–82.Google Scholar
  11. 11.
    Duffy FH. Topographic display of evoked potentials: clinical applications of brain electrical activity mapping (BEAM). Ann N Y Acad Sci. 1982;388:183–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Fender DH. Source localisation of brain electrical activity. In: Gevins AS, Remond A, editors. Handbook of electroencephalography and clinical neurophysiology, vol. 1: methods of analysis of brain electrical and magnetic signals. Amsterdam: Elsevier; 1987. pp. 355–99.Google Scholar
  13. 13.
    Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD. Statistical parametric mapping: the analysis of functional brain images. London: Academic Press; 2001.Google Scholar
  14. 14.
    Geselowitz DB. The zero of potential. IEEE Eng Med Biol Mag. 1998;17:128–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Gevins AS, Morgan NH, Bressler SL, Cutillo BA, White RM, Illes J, Greer DS, Doyle JC, Zeitlin GM. Human neuroelectric patterns predict performance accuracy. Science 1987;235:580–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalez Andino SL, Murray MM, Foxe JJ, Menendez RGP. How single-trial electrical neuroimaging contributes to multisensory research. Exp Brain Res. 2005;166:298–304.PubMedCrossRefGoogle Scholar
  17. 17.
    Gonzalez Andino SL, Grave de Peralta R, Khateb A, Pegna AJ, Thut G, Landis T. A glimpse into your vision. Hum Brain Mapp. 2007;28:614–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzalez SL, Grave de Peralta R, Thut G, Millán Jdel R, Morier P, Landis T. Very high frequency oscillations (VHFO) as a predictor of movement intentions. Neuroimage 2006;32:170–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Grave de Peralta Menendez R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino SL. Electrical neuroimaging based on biophysical constraints. Neuroimage 2004;21:527–39.PubMedCrossRefGoogle Scholar
  20. 20.
    Guthrie D, Buchwald JS. Significance testing of difference potentials. Psychophysiology 1991;28:240–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Haig AR, Gordon E, Cook S. To scale or not to scale: McCarthy and Wood revisited. Electroencephalogr Clin Neurophysiol. 1997;103:323–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Handy TC. Event-related potentials: a methods handbook. Cambridge, MA: MIT Press; 2005.Google Scholar
  23. 23.
    He B, Lian J. High-resolution spatio-temporal functional neuroimaging of brain activity. Crit Rev Biomed Eng. 2002;30:283–306.PubMedCrossRefGoogle Scholar
  24. 24.
    Hanson JC, Hillyard SA. Endogenous brain potentials associated with selective auditory attention. Electroencephalogr Clin Neurophysiol. 1980;49:277–90.CrossRefGoogle Scholar
  25. 25.
    Karniski W, Blair RC, Snider AD. An exact statistical method for comparing topographic maps, with any number of subjects and electrodes. Brain Topogr. 1994;6:203–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Katayama H, Gianotti LR, Isotani T, Faber PL, Sasada K, Kinoshita T, Lehmann D. Classes of multichannel EEG microstates in light and deep hypnotic conditions. Brain Topogr. 2007;20:7–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Koenig T, Lehmann D. Microstates in language-related brain potential maps show noun-verb differences. Brain Lang. 1996; 53:169–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 2002;16:41–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Kondakor I, Pascual-Marqui R, Michel CM, Lehmann D. Event-related potential map differences depend on prestimulus microstates. J Med Eng Technol. 1995;19:66–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Lantz G, Grave de Peralta R, Spinelli L, Seeck M, Michel CM. Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol. 2003;114:63–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Lehmann D. Principles of spatial analysis. In: Gevins AS, Remond A, editors. Handbook of electroencephalography and clinical neurophysiology, vol. 1: methods of analysis of brain electrical and magnetic signals. Amsterdam: Elsevier; 1987. pp. 309–54.Google Scholar
  32. 32.
    Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph Clin Neurophysiol. 1980;48:609–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Luck SJ. An introduction to the event-related potential technique. Cambridge, MA: MIT Press; 2005.Google Scholar
  34. 34.
    Manly BF. Randomization and Monte Carlo methods in biology. London, UK: Chapman & Hall; 1991.Google Scholar
  35. 35.
    Martuzzi R, Murray MM, Meuli RA, Thiran JP, Maeder PP, Michel CM, Menendez RGP, Andino SLG. A new analytical method to investigate frequency- and region-dependant relationships between estimated LFPs and BOLD responses in humans; 2008. In review.Google Scholar
  36. 36.
    McCarthy G, Wood CC. Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. Electroenceph Clin Neurophysiol. 1985;62:203–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Michel CM, Henggeler B, Lehmann D. 42-channel potential map series to visual contrast and stereo stimuli: perceptual and cognitive event-related segments. Int J Psychophysiol. 1992;12: 133–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Michel CM, Seeck M, Landis T. Spatio-temporal dynamics of human cognition. News Physiol Sci. 1999;14:206–14.PubMedGoogle Scholar
  39. 39.
    Michel CM, Thut G, Morand S, Khateb A, Pegna AJ, Grave de Peralta R, Gonzales S, Seeck M, Landis T. Electric source imaging of human cognitive brain functions. Brain Res Rev. 2001;36:108–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG source imaging. Clin Neurophysiol. 2004;115:2195–222.PubMedCrossRefGoogle Scholar
  41. 41.
    Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE. Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 2001;39:828–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Andino SG, Schnider A. Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. Neuroimage 2004;21:125–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Murray MM, Imber ML, Javitt DC, Foxe JJ. Boundary completion is automatic and dissociable from shape discrimination. J Neurosci. 2006;26:12043–54.Google Scholar
  44. 44.
    Murray MM, Camen C, Spierer L, Clarke S. Plastic representations of environmental sounds revealed by electrical neuroimaging. Neuroimage 2008;39:847–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Nunez PL, Silberstein RB, Cadusch PJ, Wijesinghe RS, Westdorp AF, Srinivasan R. A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr Clin Neurophysiol. 1994;90:40–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112:713–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Overney LS, Michel CM, Harris IM, Pegna AJ. Cerebral processes in mental transformations of body parts: recognition prior to rotation. Brain Res Cogn Brain Res. 2005;25:722–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Pascual-Marqui RD, Lehmann D. Comparison of topographic maps and the reference electrode: comments on two papers by Desmedt and collaborators. Electroencephalogr Clin Neurophysiol. 1993;88:530–1, 534–6.Google Scholar
  49. 49.
    Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates, model estimation and validation. IEEE Trans Biomed Eng. 1995;42:658–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Pataraia E, Baumgartner C, Lindinger G, Deecke L. Magnetoencephalography in presurgical epilepsy evaluation. Neurosurg Rev. 2002;25:141–59.PubMedCrossRefGoogle Scholar
  51. 51.
    Pegna AJ, Khateb A, Spinelli L, Seeck M, Landis T, Michel CM. Unravelling the cerebral dynamics of mental imagery. Hum Brain Mapp. 1997;5:410–21.CrossRefGoogle Scholar
  52. 52.
    Perrin F, Pernier J, Bertrand O, Giard MH, Echalier JF. Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol. 1987;66:75–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 2000;37:127–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Pourtois G, Thut G, Grave de Peralta R, Michel CM, Vuilleumier P. Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex. Neuroimage 2005;26:149–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Pourtois G, Delplanque S, Michel CM, Vuilleumier P. Beyond conventional event-related brain potentials (ERPs): exploring the time course of visual emotion processing using topographic and principal component analyses. Brain Topogr. 2008. doi: 10.1007/s10548-008-0053-6.
  56. 56.
    Rigoulot S, Delplanque S, Despretz P, Defoort-Dhellemmes S, Honoré J, Sequeira H. Peripherally presented emotional scenes: a spatiotemporal analysis of early ERP responses. Brain Topogr. 2008. doi: 10.1007/s10548-008-0050-9.
  57. 57.
    Rolls ET, Tovee MJ. Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc R Soc Lond B. 1994;257:9–15.CrossRefGoogle Scholar
  58. 58.
    Ruchkin DS, Johnson R Jr, Friedman D. Scaling is necessary when making comparisons between shapes of event-related potential topographies: a reply to Haig et al. Psychophysiology 1999;36:832–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Saron CD, Schroeder CE, Foxe JJ, Vaughan HG Jr. Visual activation of frontal cortex: segregation from occipital activity. Brain Res Cogn Brain Res. 2001;12:75–88.PubMedCrossRefGoogle Scholar
  60. 60.
    Skrandies W. Global field power and topographic similarity. Brain Topogr. 1990;3:137–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Skrandies W. EEG/EP: new techniques. Brain Topogr. 1993;5:347–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Skrandies W. The effect of stimulation frequency and retinal stimulus location on visual evoked potential topography. Brain Topogr. 2007;20:15–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Spierer L, Tardif E, Sperdin H, Murray MM, Clarke S. Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging. J Neurosci. 2007;27:5474–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Srebro R. A bootstrap method to compare the shapes of two scalp fields. Electroenceph Clin Neurophysiol. 1996;100:25–32.PubMedCrossRefGoogle Scholar
  65. 65.
    Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, Cadusch PJ. Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topogr. 1996;8:355–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Tibshirani R, Walther G, Botstein D, Brown P. Cluster validation by prediction strength. J Comput Graphical Stat. 2005;14:511–28.CrossRefGoogle Scholar
  67. 67.
    Vaughan HG Jr. The neural origins of human event-related potentials. Ann N Y Acad Sci. 1982;388:125–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Vaughan HG Jr, Arezzo JC. The neural basis of event-related potentials. In: Picton TW, editors. Human event-related potentials. EEG handbook (revised series) vol. 3. New York: Elsevier; 1988. pp. 45–96.Google Scholar
  69. 69.
    Wikswo JP, Gevins A, Williamson SJ. The future of EEG and MEG. A review article. Electroenceph Clin Neurophysiol. 1993;87:1–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Williamson SJ, Lu ZL, Karron D, Kaufman L. Advantages and limitations of magnetic source imaging. Brain Topogr. 1991;4: 169–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Wylie GR, Murray MM, Javitt DC, Foxe JJ. Distinct neurophysiological mechanisms mediate mixing costs and switch costs. J Cogn Neurosci. 2008. in press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Micah M. Murray
    • 1
    • 2
    • 3
    Email author
  • Denis Brunet
    • 1
    • 4
  • Christoph M. Michel
    • 1
    • 4
  1. 1.Electroencephalography Brain Mapping CoreCenter for Biomedical Imaging of Lausanne and GenevaLausanneSwitzerland
  2. 2.The Functional Electrical Neuroimaging Laboratory, Neuropsychology and Neurorehabilitation ServiceVaudois University Hospital Center and University of LausanneLausanneSwitzerland
  3. 3.The Functional Electrical Neuroimaging Laboratory, Radiology ServiceVaudois University Hospital Center and University of LausanneLausanneSwitzerland
  4. 4.Functional Brain Mapping Laboratory, Department of Fundamental and Clinical NeuroscienceUniversity Hospital and University Medical SchoolGenevaSwitzerland

Personalised recommendations