Brain Topography

, Volume 20, Issue 2, pp 97–104 | Cite as

The Influence of Cognitive Tasks on Different Frequencies Steady-state Visual Evoked Potentials

Original Paper

Abstract

Previous studies suggested that there exists different neural networks for different frequency bands of steady-state visual evoked potential (SSVEP). What is the effect of the same cognitive task on different frequency SSVEPs? In this work, when a subject was conducting a graded memory task, a 8.3 or 20 Hz flicker was used as a background stimulation. The recorded EEGs were analyzed by the method of steady-state probe topography (SSPT), the results showed that SSVEPs under these two flicker conditions were similar to each other in the various stages of memory process, and were similar to the result of a high alpha band SSVEP as reported before. However, the SSVEP amplitude and latency in the lower frequency band is more clear and stable than that in the higher frequency band. These results suggest that the same cognitive task affects the different frequency SSVEP in a similar way, and the low frequency flicker is a better choice than the high frequency one in such as working memory study.

Keywords

Steady-state visual evoked potential (SSVEP) Steady-state probe topography (SSPT) Memory task Flicker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was supported by the 973 project 2003CB716106 and NSFC (# 30525030, #60571019), thanks to Mr. Liao Xiang and Ms.Wu Dan for their helps in data collections.

References

  1. 1.
    Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier Pubs; 1989Google Scholar
  2. 2.
    Herrmann CS. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenome. Exp Brain Res 2001;137:346–353PubMedCrossRefGoogle Scholar
  3. 3.
    Silberstein RB, Ciorciari J, Pipingas A. Steady-state visual evoked potential topography during the Wisconsin card sorting test. Electroencephalogr Clin Neurophysiol 1995;96:24–35PubMedCrossRefGoogle Scholar
  4. 4.
    Burkitt GR, Silberstein RB, Cadusch PJ, Wood AW. Steady-state visual evoked potentials and travelling waves. Clin Neurophysiol 2000;111:246–58PubMedCrossRefGoogle Scholar
  5. 5.
    Muller MM, Teder W, Hillyard SA. Magentoencephalographic recording of steady-state visual evoked cortical activity. Brain Topogr 1997;9:163–8PubMedCrossRefGoogle Scholar
  6. 6.
    Gevins AS, Yeager CL, Zeitlin GM, Ancoli S, Dedon MF. On-line computer rejection of EEG artifact. Electroencephalogr Clin Neurophysiol 1977;42:267–74PubMedCrossRefGoogle Scholar
  7. 7.
    Silberstein RB, Nunez PL, Pipingas A, Harris P, Danieli F. Steady-state visual evoked potential SSVEP topography in a graded working memory task. Int J Psychophysiol 2001;42: 219–32PubMedCrossRefGoogle Scholar
  8. 8.
    Ellis KA, Silberstein RB, Nathan PJ. Exploring the temporal dynamics of the spatial working memory n-back task using steady state visual evoked potentials(SSVEP). NeuroImage 2006;31: 1741–51PubMedCrossRefGoogle Scholar
  9. 9.
    Rooy CV, Stough C, Pinpingas A, Hocking C, Silberstein RB. Spatial working memory and intelligence biological correlates. Intelligence 2001;29:275–92CrossRefGoogle Scholar
  10. 10.
    Silberstein RB, Harris PG, Nield GA, Pipingas A. Frontal steady-state potential changes predict long-term recognition memory performance. Int J Psychophysiol 2000;39:79–85PubMedCrossRefGoogle Scholar
  11. 11.
    Silberstein RB, Schier MA, Pipingas A, Ciorciari J, Wood SR, Simpson DG. Steady-state visual evoked potential topography associated with a visual vigilance task. Brain Topogr 1990;3: 337–47PubMedCrossRefGoogle Scholar
  12. 12.
    Kemp AH, Gray MA, Eide P, Silberstein RB, Nathan PJ. Steady-state visual evoked potential topography during processing of emotional valence in healthy subjects. NeuroImage 2002;17: 1684–92PubMedCrossRefGoogle Scholar
  13. 13.
    Kemp AH, Silberstein RB, Armstrong SM, Nathan PJ. Gender differences in the cortical electrophysiological processing of visual emotional stimuli. NeuroImage 2004;16:632–46CrossRefGoogle Scholar
  14. 14.
    Gray MA, Kemp KH, Silberstein RB, Nathan PJ. Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). NeuroImage 2003;20: 975–86PubMedCrossRefGoogle Scholar
  15. 15.
    Kemp AH, Gray MA, Silberstein RB, Armstrong SM, Nathan PJ. Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans. NeuroImage 2004;22: 1084–96PubMedCrossRefGoogle Scholar
  16. 16.
    Line P, Silberstein RB, Wright JJ, Copolov DL. Steady state visual evoked potential correlates of auditory Hallucinations in Schizophrenia. NeuroImage 1998;8:370–6PubMedCrossRefGoogle Scholar
  17. 17.
    Silberstein RB, Line P, Pipingas A, Copolov D, Harris P. Steady-state visual evoked potential topography during the continuous performance task in normal controls and schizophrenia. Clin Neurophysiol 2000;111:850–7PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson JC, Tzambazis K, Stough C, Nagata K, Silberstein RB. The effects of nicotine on the 13 Hz steady-state visual evoked potential. Clin Neurophysiol 2000;111:1589–95PubMedCrossRefGoogle Scholar
  19. 19.
    Perlstein WM, Cole MA, Larson M, Kelly K, Seignourel P, Keil A. Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans. Neurosci Lett 2003;342:191–5PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan ST, Hansen JC, Hillyard SA. Selective attention to stimulus location modulates the steady state visual evoked potential. PNAS 1996;93:4770–4PubMedCrossRefGoogle Scholar
  21. 21.
    Muller MM, Picton TW, Sosa PV, Riera J, Teder WA, Hillyard SA. Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Cogn Brain Res 1998;6:249–61CrossRefGoogle Scholar
  22. 22.
    Muller MM, Hillyard SA. Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention. Clin Neurophysiol 2000;111:1544–52PubMedCrossRefGoogle Scholar
  23. 23.
    Tucker DM, Liotti M, Potts GF, Russel GS, Posner MI. Spatiotemporal analysis of brain electrical fields. Hum Brain Mapp 1994;1:134–52CrossRefGoogle Scholar
  24. 24.
    Silberstein RB. Steady-state visual evoked potentials, brain resonances, and cognitive processes. In: Nunez PL, editor. Neocortical dynamics and human EEG rhythms. New York: Oxford University Press; 1995. p. 272–303Google Scholar
  25. 25.
    Yao D, Wang L, Oostenveld R, Nielsen KD, Arendt-Nielsen L, Chen ACN. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol Meas 2005;26:173–84PubMedCrossRefGoogle Scholar
  26. 26.
    Stephen JM, Aine CJ, Christner R, Huang M, Ranken D. Visual areas identified in the frequency following response to alternating circular sinusoids. Biomag 2000;23:149–53Google Scholar
  27. 27.
    Anderson SJ, Holliday IE, Singh KD, Harding GFA. Localization and functional analysis of human cortical area V5 using magnetoencephalography. Proc R Soc Lond B 1996;263:423–31CrossRefGoogle Scholar
  28. 28.
    Derrington AM, Lennie P. Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque. J Physiol 1984;357:219–40PubMedGoogle Scholar
  29. 29.
    Merigan WH. P and M pathway specialization in the macaque. Pigments to perception. New York: Plenum Press; 1991. p. 117–25Google Scholar
  30. 30.
    Robinson DL, Petersen S. The pulvinar and visual salience. Trends Neurosci 1992;15:127–32PubMedCrossRefGoogle Scholar
  31. 31.
    Silberstein RB. Neuromodulation of neocortical dynamics. In: Nunez PL, editor. Neocortical dynamics and human EEG rhythms. New York: Oxford University Press; 1995. p. 591–627Google Scholar
  32. 32.
    Yao D. High-resolution EEG mappings: a spherical harmonic spectra theory and simulation results. Clin Neurophysiol 2000;111:81–92CrossRefGoogle Scholar
  33. 33.
    Birca A, Carmant L, Lortie A, Lassonde M. Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults. Clin Neurophysiol 2006;117:279–88PubMedCrossRefGoogle Scholar
  34. 34.
    Heinrich SP, Bach M. Adaptation dynamics in pattern-reversal visual evoked potentials. Documenta Opthalmologica 2001,102: 141–56CrossRefGoogle Scholar
  35. 35.
    Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proc.Nal.Acad Sci 1996;93:13473–80CrossRefGoogle Scholar
  36. 36.
    Nunez PL, Wingeier BM, Silberstein RB. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 2001;13:125–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center of NeuroInformatics, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations