Brain Topography

, Volume 18, Issue 3, pp 189–199 | Cite as

Neuromagnetic Changes of Brain Rhythm Evoked by Intravenous Olfactory Stimulation in Humans

  • Ai Miyanari
  • Yoshiki Kaneoke
  • Aya Ihara
  • Shoko Watanabe
  • Yasuhiro Osaki
  • Takeshi Kubo
  • Amami Kato
  • Toshiki Yoshimine
  • Yasuyuki Sagara
  • Ryusuke Kakigi
Original Paper

Summary:

To identify the changes in the respective frequency band and brain areas related to olfactory perception, we measured magnetoencephalographic (MEG) signals before and after instilling intravenously thiamine propyl disulfide (TPD) and thiamine tetrahydrofurfuryl disulfide monohydrochloride (TTFD), which evoked a strong and weak sensation of odor, respectively. For the frequency analysis of MEG, a beamformer program, synthetic aperture magnetometry (SAM), was employed and event-related desynchronization (ERD) or synchronization (ERS) was statistically determined. Both strong and weak odors induced ERD in (1) beta band (13–30 Hz) in the right precentral gyrus, and the superior and middle frontal gyri in both hemispheres, (2) low gamma band (30–60 Hz) in the left superior frontal gyrus and superior parietal lobule, and the middle frontal gyrus in both hemispheres, and (3) high gamma band 2 (100–200 Hz) in the right inferior frontal gyrus. TPD induced ERD in the left temporal, parietal and occipital lobes, while TTFD induced ERD in the right temporal, parietal and occipital lobes. The results indicate that physiological functions in several regions in the frontal lobe may change and the strength of the odor may play a different role in each hemisphere during olfactory perception in humans.

Key words:

Magnetoencephalography Synchronization Desynchronization Odor Gamma band SAM MEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E.D. Olfactory reactions in the brain of the hedgehog. J. Physiol., 1942, 100: 459–473.Google Scholar
  2. Babiloni, C., Carducci, F., Cincotti, F., Rossini, PM., Neuper, C., Pfurtscheller, G. and Babiloni, F. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage, 1999, 10: 658–665.CrossRefPubMedGoogle Scholar
  3. Bastiaansen, M.C., Bocker, K.B., Brunia, C.H., de Munck, J.C. and Spekreijse, H. Event-related desynchronization during anticipatory attention for an upcoming stimulus: a comparative EEG/MEG study. Clin. Neurophysiol., 2001, 112: 393–403.CrossRefPubMedGoogle Scholar
  4. Brauchli, P., Ruegg, PB., Etzweiler, F. and Zeier, H. Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem. Senses, 1995, 20: 505–515.PubMedGoogle Scholar
  5. Bresseler, S.L. and Freeman, W.J. Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr. Clin. Neurophysiol., 1980, 50: 19–24.Google Scholar
  6. Cerf-Ducastel, M. and Murphy, C. fMRI activation in response to odorants orally delivered in aqueous solutions. Chem. Senses, 2001, 26: 625–637.PubMedGoogle Scholar
  7. Djordjevic, J., Zatorre, R.J., Petrides, M., Boyle, J.A. and Jones-Gotman, M. Functional neuroimaging of odor imagery. Neuroimage, 2005, 24: 791–801.CrossRefPubMedGoogle Scholar
  8. Engel, A.K., Kreiter, A.K., Konig, P. and Singer, W. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad. Sci. USA, 1991, 88: 6048–6052.PubMedGoogle Scholar
  9. Fawcett, I.P., Barnes, G.R., Hillebrand, A. and Singh, K.D. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry. Neuroimage, 2004, 21: 1542–1553.CrossRefPubMedGoogle Scholar
  10. Franowicz, M.N. and Barth, D.S. Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex. J. Neurophysiol., 1995, 74: 96–112.PubMedGoogle Scholar
  11. Freeman, W.J. Topographic organization of primary olfactory nerve in cat and rabbit as shown by evoked potentials. Electroencephalogr. Clin. Neurophysiol., 1974, 36: 33–45.PubMedGoogle Scholar
  12. Gray, C.M. and Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 1989, 86: 1698–1702.PubMedGoogle Scholar
  13. Hari, R, and Salmelin, R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci., 1997, 20: 44–49.CrossRefPubMedGoogle Scholar
  14. Herdman, A.T., Wollbrink, A., Chau, W., Ishii, R., Ross, B. and Pantev, C. Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry. Neuroimage, 2003, 20: 995–1005.CrossRefPubMedGoogle Scholar
  15. Hirata, M., Kato, A., Taniguchi, M., Ninomiya, H., Cheyne, D., Robinson, S.E., Maruno, M., Kumura, E., Ishii, R., Hirabuki, N., Nakamura, H. and Yoshimine, T. Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields. Neurosci. Lett., 2002, 318: 73–76.CrossRefPubMedGoogle Scholar
  16. Hirata, M., Kato, A., Taniguchi, M., Saitoh, Y., Ninomiya, H., Ihara, A., Kishima, H., Oshino, S., Baba, T., Yorihuji, S. and Yoshimine, T. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage, 2004, 23: 46–53.CrossRefPubMedGoogle Scholar
  17. Ihara, A., Hirata, M., Yanagihara, K., Ninomiya, H., Imai, K. and Ishii, R. Neuromagnetic gamma-band activity in the primary and secondary somatosensory areas. Neuroreport, 2003, 14: 273–277.PubMedGoogle Scholar
  18. Jones-Gotman, M., Zatorre, RJ., Gendes, F., Olivier, F., Andermann, F., McMackin, D., Staunton, H., Siegel, A.M. and Wieser, H.G. Contribution of medial versus lateral temporal-lobe structures to human odour identification. Brain, 1997, 120: 1845–1856.CrossRefPubMedGoogle Scholar
  19. Kettenmann, B., Jousmaki, V., Portin, K., Salmerin, R., Kobal, G. and Hari, R. Odorants activate the human superior temporal sulcus. Neurosci. Lett., 1996, 203: 143–145.CrossRefPubMedGoogle Scholar
  20. Kettenmann, B., Hummel, C., Stefan, H. and Kobal, G. Multiple olfactory activity in the human neocortex identified by magnetic source imaging. Chem. Senses, 1997, 22: 493–502.PubMedGoogle Scholar
  21. Klimesch, W., Schimke, H. and Schwaiger, J. Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiol., 1994, 91: 428–441.PubMedGoogle Scholar
  22. Klemm, W.R., Lutes, S.D., Hendrix, D.V. and Warrenberg, S. Topographical EEG maps of human responses to odor. Chem. Senses, 1992, 17: 347–361.Google Scholar
  23. Kobal, G. and Hummel, C. Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalogr. Clin. Neurophysiol., 1988, 71: 241–250.PubMedGoogle Scholar
  24. Koizuka, I., Yano, H., Nagahara, M., Mochizuki, R., Seo, R., Shimada, K., Kubo, T. and Nogawa, T. Functional imaging of the human olfactory cortex by magnetic resornance imaging. ORL J. Otorhinolaryngol. Relat. Spec., 1994, 53: 273–275.Google Scholar
  25. Lopes da Silva, F. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol., 1991, 79: 81–93.PubMedGoogle Scholar
  26. Lorig, T.S., Huffman, E., DeMartino, A. and DeMarco, J. The effects of low concentration odors on EEG activity and behaviour. J. Psychophysiol., 1991, 9: 178–179.Google Scholar
  27. MacDonald, K.D. and Barth, D.S. High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex. Brain Res., 1995, 694: 1–12.CrossRefPubMedGoogle Scholar
  28. Makinen, V.T., May, P.J. and Tiitinen, H. Human auditory event-related processes in the time-frequency plane. Neuroreport, 2004, 15: 1767–1771.PubMedGoogle Scholar
  29. Neuper, C. and Pfurtscheller, G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol., 2001, 43: 41–58.CrossRefPubMedGoogle Scholar
  30. Ottoson, D. Olfactory bulb potentials induced by electrical stimulation of the nasal mucosa in the frog. Acta Physiol. Scand., 1959, 47:160–172.PubMedGoogle Scholar
  31. Paradiso, G., Cunic, D., Saint-Cyr, J.A., Hoque, T., Lozano, A.M., Lang, A.E. and Chen, R. Involvement of human thalamus in the preparation of self-paced movement. Brain, 2004, 127: 2717–2731.CrossRefPubMedGoogle Scholar
  32. Pfurtscheller, G. and Neuper, C. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport, 1992, 3: 1057–1060.PubMedGoogle Scholar
  33. Pfurtscheller, G., Neuper, C. and Kalcher, J. 40-Hz oscillations during motor behavior in man. Neurosci. Lett., 1993, 164: 179–182.CrossRefPubMedGoogle Scholar
  34. Robinson, S.E. and Vrba, J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: T. Yoshimoto, M. Kotani, S. Kuriki, H. Karibe, and N. Nakasato (Eds.), Recent Advances in Biomagnetism. Tohoku University Press, Sendai, Japan, 1999: 302–305.Google Scholar
  35. Sakuma, K., Kakigi, R., Kaneoke, Y., Hoshiyama, M., Koyama, S., Nagata, O., Takeshima, Y., Ito, Y. and Nakashima, K. Odorant evoked magnetic fields in humans. Neurosci. Res., 1997, 27: 115–122CrossRefPubMedGoogle Scholar
  36. Schulz, M., Chau, W., Graham, S.J., McIntosh, A.R., Ross, B., Ishii, R. and Pantev, C. An integrative MEG-fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis. Neuroimage, 2004, 22: 120–133.CrossRefPubMedGoogle Scholar
  37. Serrien, D.J., Pogosyan, A.H. and Brown, P. Influence of working memory on patterns of motor related cortico-cortical coupling. Exp. Brain Res., 2004, 155: 204–210.CrossRefPubMedGoogle Scholar
  38. Small, D.M., Jones-Gotman, M., Zatorre, R.J., Petriedes, M. and Evans, A.C. Flavor processing: more than the sum of its parts. Neuroreport, 1997, 8: 3913–3917.PubMedGoogle Scholar
  39. Sobel, N., Prabhakaran, V., Desmond, J.E., Glover, G.H., Goode, R.L., Sullivan, E.V. and Gabrieli, J.D., Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature, 1998, 392: 282–286.CrossRefPubMedGoogle Scholar
  40. Sobel, N., Prabhakaran, V., Zhao, Z., Desmond, J.E., Glover, G.H., Sullivan, E.V. and Gabrieli, J.D. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol., 2000, 83: 537–551.PubMedGoogle Scholar
  41. Stacher, G., Bauer, H. and Steinringer, H. Cholecystokinin decreases appetite and activation evoked by stimuli arising from the preparation of a meal in man. Physiol. Behav., 1979, 23: 325–331.CrossRefPubMedGoogle Scholar
  42. Tamura, Y., Hoshiyama, M., Nakata, K., Hiroe, N., Inui, K., Kaneoke, Y., Inoue, K. and Kakigi, R. Functional relationship between human rolandic oscillations and motor cortical excitability: an MEG study. Eur. J. Neurosci., 2005, 21: 2555–2562.CrossRefPubMedGoogle Scholar
  43. Tanabe, T., Yarita, H., Iino, M., Ooshima, Y. and Takagi, S.F. An olfactory projection area in orbitofrontal cortex of the monkey. J. Neurophysiol., 1975, 38: 1269–1283.PubMedGoogle Scholar
  44. Taniguchi, M., Kato, A., Fujita, N., Hirata, M., Tanaka, H., Kihara, T., Ninomiya, H., Hirabuki, N., Nakamura, H., Robinson, S.E., Cheyne, D. and Yoshimine, T. Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography. Neuroimage, 2000, 12: 298–306.CrossRefPubMedGoogle Scholar
  45. Tonoike, M., Yamaguchi, M., Kaetsu, I., Kida, H., Seo, R. and Koizuka, I. Ipsilateral dominance of human olfactory activated centers estimated from event-related magnetic fields measured by 122-channel whole-head neuromagnetometer using odorant stimuli synchronized with respirations. Ann. N.Y. Acad. Sci., 1998, 855: 579–590.CrossRefPubMedGoogle Scholar
  46. Walla, P., Hufnagl, B., Lindinger, G., Imhof, H., Deecke, L. and Lang, W. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects. Neuroimage, 2001, 13: 402–409.CrossRefPubMedGoogle Scholar
  47. Walla, P., Hufnagl, B., Lehrner, J., Mayer, D., Lindinger, G., Imhof, H., Deecke, L. and Lang, W. Olfaction and depth of word processing: a magnetoencephalographic study. Neuroimage, 2003, 18: 104–116.CrossRefPubMedGoogle Scholar
  48. Yamamoto, C. and Yamamoto, T. Oscillation potential in strychninized olfactory bulb. Jpn. J. Physiol., 1962, 12:14–24.PubMedGoogle Scholar
  49. Yano. Studies on the nutritional value of allium plants: changes of thiamine contents in the blood after oral or parenteral administration of allithiamine. Vitamin, 1958, 15: 617–621. (in Japanese).Google Scholar
  50. Zatorre, R.J., Jones-Gotman, M., Evans, A.C. and Meyer, E. Functional localization and lateralization of human olfactory cortex. Nature, 1992, 360: 339–340.CrossRefPubMedGoogle Scholar
  51. Zelano, C., Bensafi, M., Porter, J., Mainland, J., Johnson, B., Bremner, E., Telles, C., Khan, R. and Sobel, N. Attentional modulation in human primary olfactory cortex. Nat. Neurosci., 2005, 8: 114–120.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ai Miyanari
    • 1
    • 5
  • Yoshiki Kaneoke
    • 1
    • 2
  • Aya Ihara
    • 1
  • Shoko Watanabe
    • 1
    • 2
  • Yasuhiro Osaki
    • 3
  • Takeshi Kubo
    • 3
  • Amami Kato
    • 4
  • Toshiki Yoshimine
    • 4
  • Yasuyuki Sagara
    • 5
  • Ryusuke Kakigi
    • 1
    • 2
    • 6
  1. 1.Department of Integrative PhysiologyNational Institute for Physiological SciencesOkazakiJapan
  2. 2.Department of Physiological Sciences, School of life SciencesThe Graduate University for Advanced StudiesKanagawaJapan
  3. 3.Department of OtorhinolaryngologyOsaka University Graduate School of MedicineOsakaJapan
  4. 4.Department of NeurosurgeryOsaka University Graduate School of MedicineOsakaJapan
  5. 5.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  6. 6.RISTEXJSTJapan

Personalised recommendations