Advertisement

A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform

  • Uwe SpankEmail author
  • Markus Hehn
  • Philipp Keller
  • Matthias Koschorreck
  • Christian Bernhofer
Research Article

Abstract

The eddy-covariance (EC) technique is used to determine mass and energy fluxes between the Earth’s surface and the lower atmosphere at high temporal resolution. Despite the frequent and successful use of the EC technique at terrestrial sites, its application over water surfaces is rare. We present one season of EC measurements conducted on the Rappbode Reservoir, Germany’s largest drinking water reservoir. A floating observation platform in the centre of the reservoir is used for observations of fluxes that were unaffected by surrounding land surfaces and therefore representative of the actual water–atmosphere exchange. The temporal patterns of sensible heat flux are inverted compared to land sites, since the maxima and the minima occur at night and day respectively. The latent heat flux and the evaporation are unexpectedly low for a site where evaporation is not limited by the availability of water. The daily totals in summer and autumn are only 50% and 75% of the potential evaporation assessed by the FAO grass-reference evaporation, respectively. Measurement uncertainties and the effects of the energy balance closure are ruled out as potential factors, so that low values appear to be a general feature of large water surfaces. The observed carbon dioxide fluxes are characterized by distinctive diurnal variations in a typical range for lakes and reservoirs. However, the methane fluxes are low compared to other inland waters.

Keywords

Eddy covariance Evaporation Greenhouse gas emissions Mass and energy exchange Methane and carbon dioxide fluxes 

Notes

Acknowledgements

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the frame of the project “Greenhouse Gas Emissions from Reservoirs: Mechanisms and Quantification—TregaTa” (Project Number: 288267759). We greatly appreciate the support of the Talsperrenbetrieb Sachsen-Anhalt for providing infrastructure, data and access to the water. Especially, we thank Mr. Henning, Mrs. Dietze, Mr. Wedel and the technical staff for their personal commitment. Special thank go to Udo Postel, Uwe Eichelmann, Heiko Prasse and Martin Wieprecht for their technical assistance. In particular, we are grateful to the editor and both unknown reviewers for the constructive comments that helped us to improve our manuscript.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation. FAO irrigation and drainage paper no. 56, 300 ppGoogle Scholar
  2. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, ClementR Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (1999) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  3. Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences, DordrechtCrossRefGoogle Scholar
  4. Barr AG, Morgenstern K, Black TA, McCaughey JH, Nesic Z (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric For Meteorol 140:322–337CrossRefGoogle Scholar
  5. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596CrossRefGoogle Scholar
  6. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009CrossRefGoogle Scholar
  7. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50CrossRefGoogle Scholar
  8. Baumgartner A, Liebscher HJ (1996) Lehrbuch der Hydrologie. 1: Allgemeine Hydrologie - quantitative hydrologie. Gebrüder Bornträger, Berlin, 673 ppGoogle Scholar
  9. Beyrich F, Leps J-P, Mauder M, Bange J, Foken T, Huneke S, Lohse H, Lüdi A, Meijninger WML, Mironov D, Weisensee U, Zittel P (2006) Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Boundary-Layer Meteorol 121:33–65CrossRefGoogle Scholar
  10. Biermann T, Babel W, Ma W, Chen X, Thiem E, Ma Y, Foken T (2014) Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor Appl Climatol 116:301–316CrossRefGoogle Scholar
  11. Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X (1997) Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J Geophys Res Atmos 102:28915–28927CrossRefGoogle Scholar
  12. Brust K (2017) The impact of climate and land use on surface fluxes of matter and energy: a measurement and model study. Dissertation, Technische Universität Dresden, Dresden, Germany. http://pdf.hydro-consult.de/2017_Thesis_Dissertation_Kristina_Brust_Tharandter_Klimaprotokolle_Band_23.pdf. Last access 05.02.2019
  13. Brust K, Hehn M, Bernhofer C (2012) Comparative analysis of matter and energy fluxes determined by Bowen ratio and eddy covariance techniques at a crop site in eastern Germany. EGU general assembly conference abstracts, p 8006Google Scholar
  14. Burba GG (2013) Eddy covariance method for scientific, industrial, agricultural, and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. LI-COR Biosciences, Lincoln Nebraska, 332 ppGoogle Scholar
  15. Burba GG, Anderson D (2010) A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications. LI-COR Biosciences, Lincoln Nebraska, 213 ppGoogle Scholar
  16. Ceschia E, Bernhofer C, Béziatg P, Carrarai A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Oliosol A, Sanz MJ, Saunders M, Søgaard H, Ziegler W (2010a) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345CrossRefGoogle Scholar
  17. Ceschia E, Béziat P, Dejoux JF, Aubinet M, Bernhofer C, Bodson B, Buchmann N, Carrara A, Cellier P, Di Tommasi P, Elbersi JA, Eugster W, Grünwald T, Jacobs CMJ, Jans WWP, Jones M, Kutsch W, Lanigan G, Magliulo E, Marloie M, Moors EJ, Moureaux C, Olioso A, Osborne B, Sanz MJ, Saunders M, Smith P, Soegaard H, Wattenbach M (2010b) Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric Ecosyst Environ 139:363–383CrossRefGoogle Scholar
  18. Chamberlain SD, Verfaillie J, Eichelmann E, Hemes KS, Baldocchi DD (2017) Evaluation of density corrections to methane fluxes measured by open-path eddy covariance over contrasting landscapes. Boundary-Layer Meteorol 165:197–210CrossRefGoogle Scholar
  19. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185CrossRefGoogle Scholar
  20. Deemer BR, Harrison JA, Li S, Beaulieu JJ, Del Sontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66(11):949–964CrossRefGoogle Scholar
  21. Del Sontro T, Beaulieu JJ, Downing JA (2018a) Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol Oceanogr Lett 3:64–75CrossRefGoogle Scholar
  22. Del Sontro T, del Giorgio PA, Prairie YT (2018b) No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21:1073–1087CrossRefGoogle Scholar
  23. Dingman SL (2008) Physical hydrology, 2nd edn. Prentice Hall, Upper Saddle River, 646 ppGoogle Scholar
  24. Dones R, Heck T, Hirschberg S (2004) Greenhouse gas emissions from energy systems: comparison and overview. In: Smith B, Gschwend B (eds) Scientific report 2003, vol IV. Nuclear energy and safety. Paul Scherrer, Villigen, pp 27–40Google Scholar
  25. dos Santos MA, Rosa LP, Sikar B, Sikar E, dos Santos EO (2006) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34:481–488CrossRefGoogle Scholar
  26. Dyck S, Peschke G (1995) Grundlagen der Hydrologie. Verlag für Bauwesen, Berlin, 536 ppGoogle Scholar
  27. Eugster W, Del Sontro T, Sobek S (2011) Eddy covariance flux measurements confirm extreme CH4 emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences 8:2815–2831CrossRefGoogle Scholar
  28. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Grainer A, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker AE, Tenhunen J, Tu K, Verma S, Vesala T (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69CrossRefGoogle Scholar
  29. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katulm G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S et al (2001b) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107:71–77CrossRefGoogle Scholar
  30. FAO (Food and Agricultural Organization of the United Nations) (2009) ET0 calculator. http://www.fao.org/land-water/databases-and-software/eto-calculator/en/. Last access 25 Apr 2019
  31. Fearnside PM (1997) Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil’s Tucuruí Dam as compared to fossil fuel alternatives. Environ Conserv 24:64–75CrossRefGoogle Scholar
  32. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly ‘clean’ energy source. Clim Change 66:1–8CrossRefGoogle Scholar
  33. Foken T (2008a) Micrometeorology. Springer, Berlin, 308 ppGoogle Scholar
  34. Foken T (2008b) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367CrossRefGoogle Scholar
  35. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  36. Foken T, Aubinet M, Leuning R (2012) The eddy covariance method. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance. Springer, Dordrecht, pp 1–19Google Scholar
  37. Franssen HJH, Stöckli R, Lehner I, Rotenberg E, Seneviratne SI (2010) Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. Agric For Meteorol 150:1553–1567CrossRefGoogle Scholar
  38. Franz D, Acosta M, Altimir N, Arriga N, Arrouays D, Aubinet M, Aurela M, Ayres E, López-Ballesteros A, Barbaste M, Berveiller D, Biraud S, Boukir H, Brown T, Brümmer C, Buchmann N, Burba G, Carrara A, Cescatti A, Ceschia E, Clement R, Cremonese E, Crill P, Darenova E, Dengel S, D’Odorico P, Filippa G, Fleck S, Fratini G, Fuß R, Gielen B, Gogo S, Grace J, Graf A, Grelle A, Gross P, Grünwald T, Haapanala S, Hehn M, Heinesch B, Heiskanen J, Herbst M, Herschlein C, Hörtnagl L, Hufkens K, Ibrom A, JolivetC Joly L, Jones M, Kiese R, Klemedtsson L, Kljun N, Klumpp K, Kolari P, Kolle O, Kowalski A, Kutsch W, Laurila T, de Ligne A, Linder S, Lindroth A, Lohila A, Longdoz B, Mammarella I, Manise T, Jiménez SM, Matteucci G, Mauder M, Meier P, Merbold L, Mereu S, Metzger S, Migliavacca M, Mölder M, Montagnani L, Moureaux C, Nelson D, Nemitz E, Nicolini G, Nilsson MB, de Beeck MO, Osborne B, Löfvenius MO, Pavelka M, Peichl M, Peltola O, Pihlatie M, Pitacco A, Pokorný R, Pumpanen J, Ratié C, Rebmann C, Roland M, Sabbatini S, Saby NPA, Saunders M, Schmid HP, Schrumpf M, Sedlák P, Ortiz PS, Siebicke L, Šigut L, Silvennoinen H, Simioni G, Skiba U, Sonnentag O, Soudani K, Soulé P, Steinbrecher R, Tallec T, Thimonier A, Tuittila E-S, Tuovinen J-P, Vestin P, Vincent G, Vincke C, Vitale D, Waldner P, Weslien P, Wingate L, Wohlfahrt G, Zahniser M, Vesala T (2018a) Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review. Int Agrophys 32:439–455CrossRefGoogle Scholar
  39. Franz D, Mammarella I, Boike J, Kirillin G, Vesala T, Bornemann N, Larmanou E, Langer M, Sachs T (2018b) Lake-atmosphere heat flux dynamics of a thermokarst lake in arctic Siberia. J Geophys Res Atmos 123:5222–5239CrossRefGoogle Scholar
  40. Halbedel S, Koschorreck M (2013) Regulation of CO2 emissions from temperate streams and reservoirs. Biogeosciences 10:7539–7551CrossRefGoogle Scholar
  41. Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226CrossRefGoogle Scholar
  42. Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T (2011) Long-term direct CO2 flux measurements over a boreal lake: five years of eddy covariance data. Geophys Res Lett 38:L18401CrossRefGoogle Scholar
  43. Ibrom A, Dellwik E, Larsen SE, Pilegaard K (2007) On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements. Tellus B Chem Phys Meteorol 59:937–946CrossRefGoogle Scholar
  44. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://www.ipcc.ch/report/ar5/wg1/. Last access 5 Feb 2019
  45. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07CrossRefGoogle Scholar
  46. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 304 ppGoogle Scholar
  47. Katerji N, Rana G (2006) Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agric For Meteorol 138:142–155CrossRefGoogle Scholar
  48. Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25:1581–1600CrossRefGoogle Scholar
  49. Katul G, Cava D, Pogg D, Albertson J, Mahrt L (2005) Stationarity, homogeneity, and ergodicity in canopy turbulence. In: Lee X, Law B, Massman W (eds) handbook of micrometeorology a guide for surface flux measurement and analysis. Kluwer Academic, Dordrecht, pp 161–180CrossRefGoogle Scholar
  50. Kljun N, Calanca P, Rotach M, Schmid H (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112:503–523CrossRefGoogle Scholar
  51. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224CrossRefGoogle Scholar
  52. Kutsch WL, Aubinet M, Buchmann N, Smith P, Osborne B, Eugster W, Wattenbach M, Schrumpf M, Schulze ED, Tomelleri E, Ceschia E, Bernhofer C, Béziat P, Carrara A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Olioso A, Sanz MJ, Saunders M, Søgaard H, Ziegler W (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345CrossRefGoogle Scholar
  53. Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology. Springer, Berlin, 239 ppGoogle Scholar
  54. Lee X, Massman W (2011) A Perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139:37–59CrossRefGoogle Scholar
  55. Lee X, Law B, Massman W (2004) Handbook of micrometeorology a guide for surface flux measurement and analysis. Kluwer Academic, Dordrecht, 250 ppGoogle Scholar
  56. Lee X, Liu S, Xiao W, Wang W, Gao Z, Cao C, Hu C, Hu Z, Shen S, Wang Y, Wen X, Xiao Q, Xu J, Yang J, Zhang M (2014) The Taihu eddy flux network: an observational program on energy, water and greenhouse gas fluxes of a large freshwater lake. Bull Am Meteorol Soc .  https://doi.org/10.1175/BAMS-D-13-00136.1 CrossRefGoogle Scholar
  57. Leuning R, Moncrieff J (1990) Eddy-covariance CO2 flux measurements using open- and closed-path CO2 analyzers: corrections for analyzer water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol 53:63–76CrossRefGoogle Scholar
  58. Leuning R, van Gorsel E, Massman W, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74CrossRefGoogle Scholar
  59. LI-COR Biosciences (2017) EddyPro. https://www.licor.com/env/products/eddy_covariance/software.html. Last access 6 Feb 2019
  60. Long MH, Nicholson DP (2018) Surface gas exchange determined from an aquatic eddy covariance floating platform. Limnol Oceanogr Methods 16:145–159CrossRefGoogle Scholar
  61. Maeck A, Del Sontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013a) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137CrossRefGoogle Scholar
  62. Maeck A, Hofmann H, Lorke A (2013b) Pumping methane out of aquatic sediments—forcing mechanisms that affect the temporal dynamics of ebullition. Biogeosci Discuss 10:18687–18722CrossRefGoogle Scholar
  63. Maeck A, Hofmann H, Lorke A (2014) Pumping methane out of aquatic sediments—ebullition forcing mechanisms in an impounded river. Biogeosciences 11:2925–2938CrossRefGoogle Scholar
  64. Mammarella I, Nordbo A, Rannik Ü, Haapanala S, Levula J, Laakso H, Ojala A, Peltola O, Heiskanen J, Pumpanen J, Vesala T (2015) Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland. J Geophys Res Biogeosci 120:2014JG002873CrossRefGoogle Scholar
  65. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198CrossRefGoogle Scholar
  66. Massman W (2001) Reply to comment by Rannik on “A simple method for estimating frequency response corrections for eddy covariance systems.”. Agric For Meteorol 107:247–251CrossRefGoogle Scholar
  67. Massman W, Ibrom A (2008) Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow. Atmos Chem Phys 8:6245–6259CrossRefGoogle Scholar
  68. Mauder MA (2013) A comment on “How well can we measure the vertical wind speed? Implications for fluxes of energy and mass” by Kochendorfer et al. Boundary-Layer Meteorol 147:329–335CrossRefGoogle Scholar
  69. Mauder M, Liebethal C, Göckede M, Leps JP, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol 121:67–88CrossRefGoogle Scholar
  70. McDermitt D, Burba G, Xu L, Anderson T, Komissarov A, Riensche B, Schedlbauer J, Starr G, Zona D, Oechel W, Oberbauer S, Hastings S (2011) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl Phys B 102:391–405CrossRefGoogle Scholar
  71. McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res Oceans 111:C09007CrossRefGoogle Scholar
  72. McMahon TA, Peel MC, Lowe L, Srikanthan R, McVicar TR (2013) Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 17:1331–1363CrossRefGoogle Scholar
  73. Moderow U, Feigenwinter C, Bernhofer C (2006) Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain. Bound Layer Meteorol 123:99–120CrossRefGoogle Scholar
  74. Moderow U, Aubinet M, Feigenwinter C, Kolle O, Lindroth A, Mölder M, Montagnani L, Rebmann C, Bernhofer C (2009) Available energy and energy balance closure at four coniferous forest sites across Europe. Theor Appl Climatol 98:397–412CrossRefGoogle Scholar
  75. Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232CrossRefGoogle Scholar
  76. Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188–189:589–611CrossRefGoogle Scholar
  77. Moncrieff JB, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending and filtering of eddy covariance time series. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology: a guide for surface flux measurements. Kluwer Academic, Dordrecht, pp 7–31Google Scholar
  78. Monteith JL, Unsworth M (1990) Principles of environmental physics, 2nd edn. Elsevier, Oxford, 291 ppGoogle Scholar
  79. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  80. Nemitz E, Mammarella I, Ibrom A, Aurela M, Burba GG, Dengel S, Gielen B, Grelle A, Heinesch B, Herbst M, Hörtnagl L, Klemedtsson L, Lindroth A, Lohila A, McDermitt DK, Meier P, Merbold L, Nelson D, Nicolini G, Nilsson MB, Peltola O, Rinne J, Zahniser M (2018) Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. Int Agrophys 32:517–549CrossRefGoogle Scholar
  81. Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res Atmos 116:D02119CrossRefGoogle Scholar
  82. Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, 235 ppGoogle Scholar
  83. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin H, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000, part I: overview and energy balance. Boundary-Layer Meteorol 123:1–28CrossRefGoogle Scholar
  84. Panin GN, Bernhofer C (2008) Parametrization of turbulent flux over inhomogeneous landscapes. Atmos Ocean Phys 44:701–716CrossRefGoogle Scholar
  85. Penman H (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser Math Phys Sci 193:120–145CrossRefGoogle Scholar
  86. Podgrajsek E, Sahlée E, Rutgersson A (2014) Diurnal cycle of lake methane flux. J Geophys Res Biogeosci 119:236–248CrossRefGoogle Scholar
  87. Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole J, del Giorgio P, Del Sontro T, Guérin F, Harby A, Harrison J, Mercier-Blais S, Serça D, Sobek S, Vachon D (2017) Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21(5):1058–1071CrossRefGoogle Scholar
  88. Pütz K, Benndorf J (1998) The importance of pre-reservoirs for the control of eutrophication of reservoirs. Water Sci Technol 37:317–324CrossRefGoogle Scholar
  89. Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over a heterogeneous forest. Boundary-Layer Meteorol 97:137–166CrossRefGoogle Scholar
  90. Rannik Ü, Sogachev A, Foken T, Göckede M, Kljun N, Leclerc MY, Vesala T (2012) Footprint analysis. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences, Dordrecht, pp 211–261CrossRefGoogle Scholar
  91. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359CrossRefGoogle Scholar
  92. Rebmann C, Aubinet M, Schmid H, Arriga N, Aurela M, Burba G, Clement R, De Ligne A, Fratini G, Gielen B, Grace J, Graf A, Gross P, Haapanala S, Herbst M, Hörtnagl L, Ibrom A, Joly L, Kljun N, Kolle O, Kowalski A, Lindroth A, Loustau D, Mammarella I, Mauder M, Merbold L, Metzger S, Mölder M, Montagnani L, Papale D, Pavelka M, Peichl M, Roland M, Serrano-Ortiz P, Siebicke L, Steinbrecher R, Tuovinen J-P, Vesala T, Wohlfahrt G, Franz D (2018) ICOS eddy covariance flux-station site setup: a review. Int Agrophys 32:471–494CrossRefGoogle Scholar
  93. Reichstein M, Menzer O (2012) Online eddy covariance data gap-filling and flux-partitioning tool. http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/. Last access 5 Feb 2019
  94. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila L, Loustau D, Matteucci G, Meyer T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439CrossRefGoogle Scholar
  95. Richardson AD, Aubinet M, Barr AG, Hollinger DY, Ibrom A, Lasslop G, Reichstein M (2012) Uncertainty quantification. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences, Dordrecht, pp 173–209CrossRefGoogle Scholar
  96. Rinke K, Kuehn B, Bocaniov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K, Rinke K, Dietze M, Matthes M, Paul L, Friese K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69(2):523–536CrossRefGoogle Scholar
  97. Sabbatini S, Mammarella I, Arriga N, Fratini G, Graf A, Hörtnagl L, Ibrom A, Longdoz B, Mauder M, Merbold L, Metzger S, Montagnani L, Pitacco A, Rebmann C, Sedlák P, Šigut L, Vitale D, Papale D (2018) Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int Agrophys 32:495–515CrossRefGoogle Scholar
  98. Saidi H, Koschorreck M (2017) CO2 emissions from German drinking water reservoirs. Sci Total Environ 581:10–18CrossRefGoogle Scholar
  99. Schmidt U, Conrad R (1993) Hydrogen, carbon-monoxide, and methane dynamics in lake constance. Limnol Oceanogr 38:1214–1226CrossRefGoogle Scholar
  100. Schotanus P, Nieuwstadt F, Bruin H (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  101. Shuttleworth WJ (1993) Evaporation, chapter 4. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53Google Scholar
  102. Spank U (2010) Site water budget: influences of measurement uncertainties on measurement results and model results. Dissertation, Technischen Universität Dresden, Dresden, Germany. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62557. Last access 5 Feb 2019
  103. Spank U, Bernhofer C (2008) Another simple method of spectral correction to obtain robust eddy-covariance results. Boundary-Layer Meteorol 128:403–422CrossRefGoogle Scholar
  104. Spank U, Schwärzel K, Renner M, Moderow U, Bernhofer C (2013) Effects of measurement uncertainties of meteorological data on estimates of site water balance components. J Hydrol 492:176–189CrossRefGoogle Scholar
  105. Spank U, Köstner B, Moderow U, Grünwald T, Bernhofer C (2016) Surface conductance of five different crops based on 10 years of eddy-covariance measurements. Meteorol Z 25(3):251–266CrossRefGoogle Scholar
  106. St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775CrossRefGoogle Scholar
  107. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescattik A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric For Meteorol 171–172:137–152CrossRefGoogle Scholar
  108. Tang KW, McGinnis DF, Ionescu D, Grossart H-P (2016) Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227–233CrossRefGoogle Scholar
  109. The University of Edinburgh (School of GeoSciences, Institute of Atmospheric and Environmental Science) (2007) EdiRe. https://www.geos.ed.ac.uk/homes/jbm/micromet/EdiRe/. Last access 6 Feb 2019
  110. Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New YorkGoogle Scholar
  111. Tremblay A, Therrien J, Hamlin B, Wichmann E, LeDrew LJ (2005) GHG emissions from boreal reservoirs and natural aquatic ecosystems. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions—fluxes and processes. Springer, Berlin, pp 209–232CrossRefGoogle Scholar
  112. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300CrossRefGoogle Scholar
  113. Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A (2006) Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res 111:D11101CrossRefGoogle Scholar
  114. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  115. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100CrossRefGoogle Scholar
  116. Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32:1543–1559CrossRefGoogle Scholar
  117. Wendt-Potthoff K, Kloß C, Schultze M, Koschorreck M (2014) Anaerobic metabolism of two hydro-morphological similar pre-dams under contrasting nutrient loading (Rappbode Reservoir System, Germany). Int Rev Hydrobiol 99(5):350–362CrossRefGoogle Scholar
  118. Wentzky VC, Tittel J, Jäger CG, Rinke K (2018) Mechanisms preventing a decrease in phytoplankton biomass after phosphorus reductions in a German drinking water reservoir—results from more than 50 years of observation. Freshw Biol 63:1063–1076CrossRefGoogle Scholar
  119. Wentzky VC, Frassl MA, Rinke K, Boehrer B (2019) Metalimnetic oxygen minimum and the presence of Planktothrix rubescens in a low-nutrient drinking water reservoir. Water Res 148:208–218CrossRefGoogle Scholar
  120. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  121. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C (2002a) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  122. Wilson KB, Baldocchi DD, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Falge E, Field C, Goldstein A, Granier A, Grelle A, Halldor T, Hollinger D, Katul G, Law BE, Lindroth A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S, Vesala T, Wofsy S (2002b) Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour Res 38:30/1–30/11CrossRefGoogle Scholar
  123. Zhao X, Liu Y (2017) Phase transition of surface energy exchange in China’s largest freshwater lake. Agric For Meteorol 244–245:98–110CrossRefGoogle Scholar
  124. Zhao Y, Wu BF, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 10:1219–1230CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Environmental Sciences, Institute of Hydrology and Meteorology, Chair of MeteorologyTechnische Universität DresdenTharandtGermany
  2. 2.Department Lake ResearchHelmholtz Centre for Environmental Research – UFZMagdeburgGermany

Personalised recommendations