Advertisement

Daytime Temporal Variation of Surface-Layer Parameters and Turbulence Kinetic Energy Budget in Topographically Complex Terrain Around Umiam, India

  • Nilamoni BarmanEmail author
  • Arup Borgohain
  • S. S. Kundu
  • Rakesh Roy
  • Biswajit Saha
  • Raman Solanki
  • N. V. P. Kiran Kumar
  • P. L. N. Raju
Notes and Comments
  • 41 Downloads

Abstract

We present the temporal variation of surface-layer parameters and the turbulence kinetic energy budget over complex terrain during daytime. Data from three-dimensional fast response sonic anemometers at heights 6 m, 18 m, and 30 m above the ground are used for the analysis. Mountainous topography induces wind-direction variability over the measurement site throughout the day, which significantly influences the diurnal evolution of sensible heat flux, momentum flux, and turbulence kinetic energy. The increase and decrease of turbulence kinetic energy rely on the various production and consumption terms. Buoyancy dominates in the morning whereas in the afternoon both buoyancy and shear production contribute equally for the turbulence kinetic energy. The turbulence kinetic energy budget is also influenced by horizontal advection at the station. The correlation between turbulent decay and buoyancy (shear production) is negative (positive) in free convective conditions in the morning, whereas no correlation is observed for mixed convective conditions in the afternoon.

Keywords

Complex topography Residual transport Surface-layer parameters Turbulent flux Turbulence kinetic energy budget 

Notes

Acknowledgements

This work has been carried out as part of the IGBP-NOBLE project. We thank the Director Space Physics Laboratory, and Project Director, ISRO-IGBP program office, ISRO for their valuable support.

References

  1. Barr S, Orgill MM (1989) Influence of external meteorology on nocturnal valley drainage winds. J Appl Meteorol 28:497–517CrossRefGoogle Scholar
  2. Bianco L, Djalalova IV, King CW, Wilczak JM (2011) Diurnal evolution and annual variability of boundary layer height and its correlation with other meteorological variables in California’s Central Valley. Boundary-Layer Meteorol 140:491–511.  https://doi.org/10.1007/s10546-011-9622-4 CrossRefGoogle Scholar
  3. Bonan GB (2002) Ecological climatology. Cambridge University Press, CambridgeGoogle Scholar
  4. Caughey S, Wyngaard J (1979) The turbulence kinetic energy budget in convective conditions. Q J R Meteorol Soc 105(443):231–239CrossRefGoogle Scholar
  5. Dikshit KR, Dikshit JK (2014) North-east India: land, people, and ecology. Advances in Asian human-environment research. Springer, Berlin, pp 118–120CrossRefGoogle Scholar
  6. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2):83–105CrossRefGoogle Scholar
  7. Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315Google Scholar
  8. Geissbühler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Boundary-Layer Meteorol 96(3):371–392CrossRefGoogle Scholar
  9. Goulart A, Degrazia G, Rizza U, Anfossi D (2003) A theoretical model for the study of convective turbulence decay and comparison with large-eddy simulation data. Boundary-Layer Meteorol 107:143–155CrossRefGoogle Scholar
  10. Goulart A, Bodmann B, de Vilhena M, Soares P, Moreira D (2010) On the time evolution of the turbulent kinetic energy spectrum for decaying turbulence in the convective boundary layer. Boundary-Layer Meteorol 138:61–75CrossRefGoogle Scholar
  11. Hahn DC (1980) Observed characteristics of turbulence in the atmospheric boundary layer over mountainous terrain. Department of Atmospheric Science, Colorado State University, Fort CollinsGoogle Scholar
  12. Helgason W, Pomeroy JW (2012) Characteristics of the near-surface boundary layer within a mountain valley during winter. J Appl Meteorol Climatol 51:583–597.  https://doi.org/10.1175/JAMC-D-11-058.1 CrossRefGoogle Scholar
  13. Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972CrossRefGoogle Scholar
  14. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78:215–246CrossRefGoogle Scholar
  15. Hughes M, Hall A, Fovell RG (2007) Dynamical controls on the diurnal cycle of temperature in complex topography. Clim Dyn 29(2–3):277–292.  https://doi.org/10.1007/s00382-007-0239-8 CrossRefGoogle Scholar
  16. Jiang Q, Doyle JD, Grubišic V, Smith RB (2010) Turbulence characteristics in an elevated shear layer over Owens Valley. J Atmos Sci 67(7):2355–2371CrossRefGoogle Scholar
  17. Karacostas TS, Marwitz JD (1980) Turbulent kinetic energy budgets over mountainous terrain. J Appl Meteorol 19(2):163–174CrossRefGoogle Scholar
  18. Kolmogorov A (1941) Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303Google Scholar
  19. Kumar V, Kleissl J, Meneveau C, Parlange M (2006) Large eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42:3–18CrossRefGoogle Scholar
  20. Li JG, Atkinson BW (1999) Transition regimes in valley airflows. Boundary-Layer Meteorol 91:385–411CrossRefGoogle Scholar
  21. Lothon M, Druilhet A, Bénech B, Campistron B, Bernard S, Said F (2003) Experimental study of five föhn events during the mesoscale alpine programme: from synoptic scale to turbulence. Q J R Meteorol Soc 129(592):2171–2193CrossRefGoogle Scholar
  22. Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román- Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14:10931–10960.  https://doi.org/10.5194/acp-14-10931 CrossRefGoogle Scholar
  23. Mahrt V (2006) Variation of surface air temperature in complex terrain. J Appl Meteorol Climatol 45:1481–1493CrossRefGoogle Scholar
  24. Mahrt L, Heald R (1983) Nocturnal surface temperature distribution as remotely sensed from low-flying aircraft. Agric Meteorol 28:99–107CrossRefGoogle Scholar
  25. Mahrt L, Vickers D, Nakamura R, Sun J, Burns S, Lenschow D, Soler M (2001) Shallow drainage and gully flows. Boundary-Layer Meteorol 101:243–260CrossRefGoogle Scholar
  26. Marak JDK, Rathnam EV, Singh NR, Sudhakar S (2014) Bathymetry generation of Umiam reservoir using SONAR and GIS techniques. Intern J Eng Sci Invent 3(5):20–27Google Scholar
  27. Moeng CH, Sullivan PP (1994) A comparison of shear-and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51(7):999–1022CrossRefGoogle Scholar
  28. Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112CrossRefGoogle Scholar
  29. Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43:532–546CrossRefGoogle Scholar
  30. Nilsson E, Lohou F, Lothon M, Pardyjak E, Mahrt L, Darbieu C (2016) Turbulence kinetic energy budget during the afternoon transition—part 1: observed surface TKE budget and boundary layer description for 10 intensive observation period days. Atmos Chem Phys 16:8849–8872.  https://doi.org/10.5194/acp-16-8849-2016 CrossRefGoogle Scholar
  31. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527–530CrossRefGoogle Scholar
  32. Papadopoulos KH, Helmis CG (1999) Evening and morning transition of katabatic flows. Boundary-Layer Meteorol 92:195–227CrossRefGoogle Scholar
  33. Pino D, Vilà-Guerau de Arellano J, Duynkerke P (2003) The contribution of shear to the evolution of a convective boundary layer. J Atmos Sci 60:1913–1926CrossRefGoogle Scholar
  34. Pino D, Jonker HJJ, Vilà de Arellano J, Dosio A (2006) Role of shear and the inversion strength during sunset turbulence over land: characteristic length scales. Boundary-Layer Meteorol 121:537–556CrossRefGoogle Scholar
  35. Rai KR, Berg LK, Pekour M, Shaw WJ, Kosovic B, Mirocha JD, Ennis BL (2017) Spatio-temporal variability of turbulence kinetic energy budgets in the convective boundary layer over both simple and complex terrain. J Appl Meteorol Climatol.  https://doi.org/10.1175/JAMC-D-17-0124.1 Google Scholar
  36. Rizza U, Miglietta M, Degrazia G, Acevedo O, Marques E (2013) Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions. Physica A 392:4481–4490CrossRefGoogle Scholar
  37. Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133:937–948.  https://doi.org/10.1002/qj.71 CrossRefGoogle Scholar
  38. Sarthi PP (2015) Study of turbulence kinetic energy budget over Jodhpur, India. J Environ Soc Sci 2(1):104–110Google Scholar
  39. Sghiatti MD (2016) The spatial variability and structure of turbulent kinetic energy in the convective boundary layer over an isolated mountain. MS thesis, University of VirginiaGoogle Scholar
  40. Singh N, Solanki R, Ojha N, Janssen RHH, Pozzer A, Dhaka SK (2016) Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations. Atmos Chem Phys 16:10559–10572.  https://doi.org/10.5194/acp-16-10559-2016 CrossRefGoogle Scholar
  41. Solanki R, Singh N, Kiran Kumar NVP, Rajeev K, Dhaka SK (2016) Time variability of surface-layer characteristics over a mountain ridge in the central himalayas during the spring season. Boundary-Layer Meteorol 158:453–471.  https://doi.org/10.1007/s10546-015-0098-5 CrossRefGoogle Scholar
  42. Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82:501–515CrossRefGoogle Scholar
  43. Srivastava MK, Sarthi PP (2002) Turbulent kinetic energy in the atmospheric surface layer during the summer monsoon. Meteorol Appl 9:239–246.  https://doi.org/10.1017/S1350482702002098 CrossRefGoogle Scholar
  44. Stewart JQ, Whiteman CD, Steenburgh WJ, Bian X (2002) A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull Am Meteorol Soc 83:699–708CrossRefGoogle Scholar
  45. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  46. van Driel R, Jonker HJJ (2011) Convective boundary layers driven by non-stationary surface heat fluxes. J Atmos Sci 68:727–738CrossRefGoogle Scholar
  47. Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118:431–447CrossRefGoogle Scholar
  48. Weigel AP, Chow FK, Rotach MW (2007a) The effect of mountainous topography on moisture exchange between the surface and the free atmosphere. Boundary-layer Meteorol 125(2):227–244CrossRefGoogle Scholar
  49. Weigel AP, Chow FK, Rotach MW (2007b) On the nature of turbulent kinetic energy in a steep and narrow alpine valley. Boundary-layer Meteorol 123(1):177–199CrossRefGoogle Scholar
  50. Whiteman CD (2000) Mountain meteorology fundamentals and applications. Oxford University Press, New YorkGoogle Scholar
  51. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  52. Wyngaard J, Coté O (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28(2):190–201CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Space and Atmospheric Science DivisionNorth-Eastern Space Applications CentreShillongIndia
  2. 2.Physics DepartmentNational Institute of Technology, AgartalaAgartalaIndia
  3. 3.Maharaja Bir Bikram UniversityAgartalaIndia
  4. 4.National Astronomical Research Institute of Thailand (NARIT)Chiang MaiThailand
  5. 5.Space Physics LaboratoryVikram Sarabhai Space CentreTrivandrumIndia

Personalised recommendations