Advertisement

Boundary-Layer Meteorology

, Volume 172, Issue 1, pp 81–106 | Cite as

The Share of the Mean Turbulent Kinetic Energy in the Near-Neutral Surface Layer for High and Low Wind Speeds

  • M. SchiavonEmail author
  • F. Tampieri
  • F. C. Bosveld
  • M. Mazzola
  • S. Trini Castelli
  • A. P. Viola
  • C. Yagüe
Research Article

Abstract

We examine the dependence on wind speed of the share of the mean turbulent kinetic energy among the three velocity components in the near-neutral surface layer. To contrast the general behaviour and the local effects, four datasets are considered, corresponding to different surfaces and environmental conditions. For high wind speeds (i.e., wind speed \(\approx {10}\,{\hbox {ms}^{-1}}\)), the shares are well-defined and about the same for all sites. As wind speed decreases (becoming \(\approx {1}\,{\hbox { ms}^{-1}}\)), large record-to-record variability occurs giving, on average, an almost isotropic state for the horizontal velocity components. Through spectral analysis, we relate this behaviour to the low-frequency, submeso motions and to the lack of conditions required by Reynolds averaging. The implications for modelling are also discussed, showing that the wind speed, or a related quantity, must be accounted for, besides stability, in second-order closures.

Keywords

Dissipation rate Low wind speed Submeso motions Turbulent kinetic energy Velocity spectra 

Notes

Acknowledgements

Thanks are due to: the SABLES98 team, Prof. J.L. Casanova (Director of CIBA), and Dr. J. Peláez (for his technical support); the Korean Polar Research Institute (KOPRI), in particular Dr. T. Choi, that provided CSAT3 CCT sonic data. CY has been funded by the Spanish Government, under MINECO projects CGL2015-65627-C3-3-R (MINECO/FEDER) and CGL2016-81828-REDT.

Supplementary material

10546_2019_435_MOESM1_ESM.pdf (42 kb)
Supplementary material 1 (pdf 41 KB)
10546_2019_435_MOESM2_ESM.pdf (29 kb)
Supplementary material 2 (pdf 29 KB)
10546_2019_435_MOESM3_ESM.pdf (27 kb)
Supplementary material 3 (pdf 27 KB)
10546_2019_435_MOESM4_ESM.pdf (51 kb)
Supplementary material 4 (pdf 50 KB)
10546_2019_435_MOESM5_ESM.pdf (28 kb)
Supplementary material 5 (pdf 27 KB)

References

  1. Acevedo OC, Costa FD, Oliveira PE, Puhales FS, Degrazia GA, Roberti D (2014) The influence of submeso processes on stable boundary layer similarity relationships. J Atmos Sci 71(1):207–225CrossRefGoogle Scholar
  2. Acevedo OC, Mahrt L, Puhales FS, Costa FD, Medeiros LE, Degrazia GA (2016) Contrasting structures between the decoupled and coupled states of the stable boundary layer. Q J R Meteorol Soc 142(695):693–702CrossRefGoogle Scholar
  3. Anfossi D, Oettl D, Degrazia G, Ferrero E, Goulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorol 114:179–203CrossRefGoogle Scholar
  4. Bradshaw P (1967) “Inactive” motion and pressure fluctuations in turbulent boundary layers. J Fluid Mech 30(2):241–258CrossRefGoogle Scholar
  5. Bradshaw P (1978) Comments on horizontal velocity spectra in an unstable surface layer. J Atmos Sci 35(9):1768–1769CrossRefGoogle Scholar
  6. Cheng Y, Brutsaert W (2005) Fluxprofile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114:519–538CrossRefGoogle Scholar
  7. Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernandez A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vila J, Redondo JM, Cantalapiedra IR, Conangla L (2000) Stable atmospheric boundary-layer experiment in Spain (SABLES 98): a report. Boundary-Layer Meteorol 96:337–370CrossRefGoogle Scholar
  8. Falabino S, Trini Castelli S (2017) Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer. Meteorol Atmos Phys 129(1):83–98CrossRefGoogle Scholar
  9. de Franceschi M, Zardi D, Tagliazucca M, Tampieri F (2009) Analysis of second order moments in surface layer turbulence in an alpine valley. Q J R Meteorol Soc 135:1750–1765CrossRefGoogle Scholar
  10. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147:51–82CrossRefGoogle Scholar
  11. Ha KJ, Hyun YK, Oh HM, Kim KE, Mahrt L (2007) Evaluation of boundary layer similarity theory for stable conditions in cases-99. Mon Weather Rev 135(10):3474–3483CrossRefGoogle Scholar
  12. Hanna SR (1982) Application in air pollution modelling. D. Reidel Publishing Company, DordrechtGoogle Scholar
  13. Hanna SR (1983) Lateral turbulence intensity and plume meandering during stable conditions. J Clim Appl Meteorol 22(8):1424–1430CrossRefGoogle Scholar
  14. Hanna SR (1990) Lateral dispersion in light-wind stable conditions. Il Nuovo Cimento C 13:889–894CrossRefGoogle Scholar
  15. Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103:101–124CrossRefGoogle Scholar
  16. Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83:117137CrossRefGoogle Scholar
  17. Howell JF, Sun J (1999) Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90:495520CrossRefGoogle Scholar
  18. Hunt J (1984) Turbulence structure in thermal convection and shear-free boundary layers. J Fluid Mech 138:161–184CrossRefGoogle Scholar
  19. Hunt J, Spalart P, Mansour N (1987) A general form for the dissipation length scale in turbulent shear flows. In: Studying turbulence using numerical simulation databases. Proceedings of the 1987 Summer Program, Stanford University, pp 179–184Google Scholar
  20. Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Modern Phys 64(4):961–1043CrossRefGoogle Scholar
  21. Joffre SM, Laurila T (1988) Standard deviations of wind speed and direction from observations over a smooth surface. J Appl Meteorol 27(5):550–561CrossRefGoogle Scholar
  22. Kaimal J (1978) Horizontal velocity spectra in an unstable surface layer. J Atmos Sci 35(1):18–24CrossRefGoogle Scholar
  23. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Their structure and measurement. Oxford University Press, OxfordGoogle Scholar
  24. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589CrossRefGoogle Scholar
  25. Liang J, Zhang L, Wang Y, Cao X, Zhang Q, Wang H, Zhang B (2014) Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. J Geophys Res: Atmos 119:6009–6021.  https://doi.org/10.1002/2014JD021510
  26. Louis J, Weill A, Vidal-Madjar D (1983) Dissipation length in stable layers. Boundary-Layer Meteorol 25(3):229–243CrossRefGoogle Scholar
  27. Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Envirion Fluid Mech 7(4):331–347CrossRefGoogle Scholar
  28. Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45.  https://doi.org/10.1146/annurev-fluid-010313-141354 CrossRefGoogle Scholar
  29. Mahrt L, Richardson S, Seaman N, Stauffer DR (2012) Turbulence in the nocturnal boundary layer with light and variable winds. Q J R Meteorol Soc 138:1430–1439CrossRefGoogle Scholar
  30. Mahrt L, Thomas C, Richardson S, Seaman N, Stauffer DR, Zeeman M (2013) Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Boundary-Layer Meteorol 147:179–199CrossRefGoogle Scholar
  31. Mahrt L, Sun J, Stauffer DR (2015) Dependence of turbulent velocities on wind speed and stratification. Boundary-Layer Meteorol 155:5571.  https://doi.org/10.1007/s10546-014-9992-5 CrossRefGoogle Scholar
  32. Maturilli M, Herber A, König-Langlo G (2013) Climatology and time series of surface meteorology in ny-ålesund, svalbard. Earth Syst Sci Data 5(1):155CrossRefGoogle Scholar
  33. Mauritsen T, Svensson G (2007) Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J Atmos Sci 64:645–655CrossRefGoogle Scholar
  34. Mauritsen T, Svensson G, Zilitinkevich SS, Esau IN, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4126CrossRefGoogle Scholar
  35. Mazzola M, Viola AP, Lanconelli C, Vitale V (2016) Atmospheric observations at the Amundsen–Nobile climate change tower in Ny-Ålesund Svalbard. Rendiconti Lincei 27(1):7–18CrossRefGoogle Scholar
  36. Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187Google Scholar
  37. Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol I. MIT Press, CambridgeGoogle Scholar
  38. Moraes OL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112CrossRefGoogle Scholar
  39. Mortarini L, Anfossi D (2015) Proposal of an empirical velocity spectrum formula in low-wind speed conditions. Q J R Meteorol Soc 141(686):85–97CrossRefGoogle Scholar
  40. Mortarini L, Ferrero E, Falabino S, Trini Castelli S, Richiardone R, Anfossi D (2013) Low-frequency processes and turbulence structure in a perturbed boundary layer. Q J R Meteorol Soc 139(673):1059–1072CrossRefGoogle Scholar
  41. Mortarini L, Stefanello M, Degrazia G, Roberti D, Castelli ST, Anfossi D (2016) Characterization of wind meandering in low-wind-speed conditions. Boundary-Layer Meteorol 161(1):165–182CrossRefGoogle Scholar
  42. Nakanishi M (2001) Improvement of the mellor-yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Meteorol 99(3):349–378CrossRefGoogle Scholar
  43. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216CrossRefGoogle Scholar
  44. Obukhov A (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol 2(1):7–29CrossRefGoogle Scholar
  45. Olesen HR, Larsen SE, Hojstrup J (1984) Modelling velocity spectra in the lower part of the planetary boundary layer. Boundary-Layer Meteorol 29:285–312CrossRefGoogle Scholar
  46. Pahlow M, Parlange M, Porte-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99:225–248CrossRefGoogle Scholar
  47. Rotta JC (1951) Statisthe Theorie nichthomogener Turbulenz. Z Phys 129:547–572CrossRefGoogle Scholar
  48. San José R, Casanova J, Viloria RE, Casanova J (1985) Evaluation of the turbulent parameters of the unstable surface boundary layer outside Businger’s range. Atmos Environ (1967) 19(10):1555–1561CrossRefGoogle Scholar
  49. Smith F, Abbott P (1961) Statistics of lateral gustiness at 16 m above ground. Q J R Meteorol Soc 87(374):549–561CrossRefGoogle Scholar
  50. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Alphen aan den RijnCrossRefGoogle Scholar
  51. Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during cases-99. J Atmos Sci 69(1):338–351CrossRefGoogle Scholar
  52. Sun J, Lenschow DH, LeMone MA, Mahrt L (2016) The role of large-coherent-eddy transport in the atmospheric surface layer based on cases-99 observations. Boundary-Layer Meteorol 160(1):83–111CrossRefGoogle Scholar
  53. Tampieri F (2017) Turbulence and dispersion in the planetary boundary layer. Springer International, BerlinCrossRefGoogle Scholar
  54. Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–211Google Scholar
  55. Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556CrossRefGoogle Scholar
  56. Townsend A (1961) Equilibrium layers and wall turbulence. J Fluid Mech 11(1):97–120CrossRefGoogle Scholar
  57. Trini Castelli S, Falabino S (2013) Analysis of the parameterization for the wind-velocity fluctuation standard deviations in the surface layer in low-wind conditions. Meteorol Atmos Phys 119:91–107.  https://doi.org/10.1007/s00703-012-0219-3 CrossRefGoogle Scholar
  58. Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Richiardone R, Anfossi D (2014) Experimental investigation of surface-layer parameters in low wind-speed conditions in a suburban area. Q J R Meteorol Soc 140(683):2023–2036CrossRefGoogle Scholar
  59. Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37:129–148CrossRefGoogle Scholar
  60. Van Ulden A, Wieringa J (1996) Atmospheric boundary layer research at cabauw. In: Boundary-layer meteorology 25th anniversary vol, 1970–1995, Springer, pp 39–69Google Scholar
  61. Verkaik J, Holtslag A (2007) Wind profiles, momentum fluxes and roughness lengths at cabauw revisited. Boundary-Layer Meteorol 122(3):701–719CrossRefGoogle Scholar
  62. Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672CrossRefGoogle Scholar
  63. Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118(3):431–447CrossRefGoogle Scholar
  64. Vickers D, Mahrt L (2007) observations of the cross-wind velocity variance in the stable boundary layer. Envirion Fluid Mech 7:55–71CrossRefGoogle Scholar
  65. Van de Wiel B, Moene A, Jonker H, Baas P, Basu S, Donda J, Sun J, Holtslag A (2012) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69(11):3116–3127CrossRefGoogle Scholar
  66. Wilson JD (2008) Monin-obukhov functions for standard deviations of velocity. Boundary-Layer Meteorol 129:353–369CrossRefGoogle Scholar
  67. Yadav AK, Raman S, Sharan M (1996) Surface layer turbulence spectra and dissipation rates during low winds in tropics. Boundary-Layer Meteorol 79(3):205–223CrossRefGoogle Scholar
  68. Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux-profile relationships for wind speed, \(\phi _m\), and temperature, \(\phi _h\), for the stable atmospheric boundary layer. Nonlinear Proc Geophys 13:185–203CrossRefGoogle Scholar
  69. Yamada T, Mellor G (1975) A simulation of the Wangara atmospheric boundary layer data. J Atmos Sci 32(12):2309–2329CrossRefGoogle Scholar
  70. Zilitinkevich SS, Esau IN (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 125:193–205CrossRefGoogle Scholar
  71. Zilitinkevich SS, Hunt JCR, Esau IN, Grachev AA, Lalas DP, Akylas E, Tombrou M, Fairall CW, Fernando HJS, Baklanov A, Joffre SM (2006) The influence of large convective eddies on the surface-layer turbulence. Q J R Meteorol Soc 132:1423–1456CrossRefGoogle Scholar
  72. Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I, Esau IN (2013) A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Boundary-Layer Meteorol 146:341–373CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniveristy of BolognaBolognaItaly
  2. 2.Institute of Atmospheric Sciences and Climate - ISAC-CNRBolognaItaly
  3. 3.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  4. 4.Institute of Atmospheric Sciences and Climate - ISAC-CNRTurinItaly
  5. 5.Institute of Atmospheric Sciences and Climate - ISAC-CNRRomeItaly
  6. 6.Dpt. Física de la Tierra y Astrofísica, Facultad de CC. FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations