Advertisement

Boundary-Layer Meteorology

, Volume 170, Issue 2, pp 235–255 | Cite as

Effect of the Granularity of Heterogeneous Forest Cover on the Drag Coefficient

  • Keisuke NakaoEmail author
  • Yasuo Hattori
Research Article
  • 247 Downloads

Abstract

We investigated the effect of the granularity of heterogeneous forest cover on the momentum absorption by conducting a large-eddy simulation of the flow over a surface covered by square-shaped forest/non-forest patches ranging in size from 64 to 512 m. The modification of the drag coefficient by heterogeneity is analyzed using integral identity equations, which decompose the drag coefficient into contributions from the momentum fluxes, pressure, and forest form drag. From a macroscopic viewpoint, the drag coefficient significantly differs in each case, and its tendency is not monotonic with the granularity. The identity equation shows that the effect of the vertical momentum flux becomes persistent on the non-forest area with an increase in patch size, with the spatial development altering the drag contribution, assigning increasing importance to the forest area. The drag coefficient defined from a local viewpoint shows a strong overshoot at the front edge of the forest patch, with a sudden decrease away from the front edge. A distance of almost 10 forest heights is required to arrive at a nearly homogeneous condition. However, spatial development is still obvious in the mean advection and pressure deviation terms with spanwise heterogeneity inducing an overshoot of the drag coefficient by enhancing the secondary flow. As such, the effect of the edge remains in a transitional manner, even if a locally homogeneous region is observed in the downstream and at the centre of patches.

Keywords

Drag coefficient Fukagata–Iwamoto–Kasagi identity Forest canopy Heterogeneous land cover 

References

  1. Albertson JD, Parlange MB (1999a) Surface length scales and shear stress: implication for land-atmosphere interaction over complex terrain. Water Resour Res 35(7):2121–2132.  https://doi.org/10.1029/1999WR900094 CrossRefGoogle Scholar
  2. Albertson JD, Parlange MB (1999b) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23:239–252.  https://doi.org/10.1016/S0309-1708(99)00011-1 CrossRefGoogle Scholar
  3. Anderson W, Barros JM, Christensen KT, Awatshi A (2015) Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J Fluid Mech 768:316–347CrossRefGoogle Scholar
  4. Bailey BN, Stoll R (2016) The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J Fluid Mech 789:425–460CrossRefGoogle Scholar
  5. Belcher SE (2005) Mixing and transport in urban areas. Philos Trans R Soc Lond A 363(1837):2947–2968CrossRefGoogle Scholar
  6. Böhm M, Finnigan JJ, Raupach MR, Hughes DE (2012) Turbulence structure within and above a canopy of bluff elements. Boundary-Layer Meteorol 146:393–419CrossRefGoogle Scholar
  7. Bou-Zeid E, Meneveau C, Parlange MB (2004) Large eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40:W02505.  https://doi.org/10.1029/2003WR002475 CrossRefGoogle Scholar
  8. Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:025105.  https://doi.org/10.1063/1.1839152 CrossRefGoogle Scholar
  9. Bou-Zeid E, Parlange EB, Meneveau C (2007) On the parameterization of surface roughness at regional scales. J Atmos Sci 64(1):216–227.  https://doi.org/10.1175/JAS3826.1 CrossRefGoogle Scholar
  10. Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of airflow in waving wheat: single-point velocity statistics. Boundary-Layer Meteorol 70:95–132CrossRefGoogle Scholar
  11. Claussen M (1990) Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmos Environ 24a:1349–1360CrossRefGoogle Scholar
  12. Claussen M (1991) Estimation of areally-averaged surface fluxes. Boundary-Layer Meteorol 54:387–410.  https://doi.org/10.1007/BF00118868 CrossRefGoogle Scholar
  13. Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121(3):491–519CrossRefGoogle Scholar
  14. Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42:505–529CrossRefGoogle Scholar
  15. Deardorff J (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495–527CrossRefGoogle Scholar
  16. Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128CrossRefGoogle Scholar
  17. Dupont S, Bonnefond JM, Irvine M, Lamaud E, Brunet Y (2011) Long-distance edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments. Agric For Meteorol 151:328–344CrossRefGoogle Scholar
  18. Finnigan JJ, Shaw RH (2000) A wind tunnel study of airflow in waving wheat: an empirical orthogonal function analysis of the large-eddy motion. Boundary-Layer Meteorol 96:211–255CrossRefGoogle Scholar
  19. Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424.  https://doi.org/10.1017/S0022112009990589 CrossRefGoogle Scholar
  20. Fu Z, Iwaki Y, Motozawa M, Tsukahara T, Kawaguchi Y (2015) Characteristic turbulent structure of a modified drag-reduced surfactant solution flow via dosing water from channel wall. Int J Heat Fluid Flow 53:135–145CrossRefGoogle Scholar
  21. Fukagata K, Iwamoto K, Kasagi N (2002) Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids 14:L73–L76CrossRefGoogle Scholar
  22. Giometto MG, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange MB (2016) Spatial characterisics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol 160:425–452.  https://doi.org/10.1007/s10546-016-0157-6 CrossRefGoogle Scholar
  23. Kasagi N, Fukagata K (2006) The FIK identity and its implication for turbulent skin friction control. Transit Turbul Control 10:297–324Google Scholar
  24. Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148:357–377CrossRefGoogle Scholar
  25. Lopes SA, Palma JMLM, Piomelli U (2015) On the determination of effective aerodynamic roughness of surfaces with vegetation patches. Boundary-Layer Meteorol 156:113–130.  https://doi.org/10.1007/s10546-015-0022-z CrossRefGoogle Scholar
  26. Mason PJ (1988) The formation of areally-averaged roughness lengths. Q J R Meteorol Soc 114:399–420CrossRefGoogle Scholar
  27. Mejia-Alvarez R, Christensen KT (2010) Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys Fluids 22:015106.  https://doi.org/10.1063/1.3291076 CrossRefGoogle Scholar
  28. Mejia-Alvarez R, Christensen KT (2013) Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys Fluids 25:115109.  https://doi.org/10.1063/1.4832377 CrossRefGoogle Scholar
  29. Parlange MB, Brutsaert W (1989) Regional roughness of the landes forest and surface shear stress under neutral conditions. Boundary-Layer Meteorol 48:69–81CrossRefGoogle Scholar
  30. Poëtte C, Gardiner B, Dupont S, Harman I, Böhm M, Finnigan J, Hughes D, Brunet Y (2017) The impact of landscape fragmentation on atmospheric flow: a wind-tunnel study. Boundary-Layer Meteorol 163:393–421.  https://doi.org/10.1007/S10546-017-0238-1 CrossRefGoogle Scholar
  31. Poggi D, Katul GG (2008) The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp Fluids 45:111–121.  https://doi.org/10.1007/s00348-008-0467-7 CrossRefGoogle Scholar
  32. Poggi D, Katul GG, Albertson JD (2004) A note on the contribution of dispersive fluxes to momentum transfer within canopies. Boundary-Layer Meteorol 111:615–621.  https://doi.org/10.1023/b:boun.0000016563.76874.47 CrossRefGoogle Scholar
  33. Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284CrossRefGoogle Scholar
  34. Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech 521:251–271CrossRefGoogle Scholar
  35. Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy. Part I: the turbulent structure. Boundary-Layer Meteorol 35:21–52CrossRefGoogle Scholar
  36. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78(3):351–382.  https://doi.org/10.1007/978-94-017-0944-6_15 CrossRefGoogle Scholar
  37. Raupach MR, Hughes DE, Cleugh HA (2006) Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions. Boundary-Layer Meteorol 120(2):201–218.  https://doi.org/10.1007/S10546-006-9058-4 CrossRefGoogle Scholar
  38. Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61:47–64.  https://doi.org/10.1007/bf02033994 CrossRefGoogle Scholar
  39. Stroh A, Frohnapfel B, Schlatter P, Hasegawa Y (2015) A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys Fluids 27:075101.  https://doi.org/10.1063/1.4923234 CrossRefGoogle Scholar
  40. Sullivan P, McWilliams JC, Moeng CH (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71(3):247–276CrossRefGoogle Scholar
  41. Wieringa J (1976) An objective exposure correction method for average wind speeds measured at a sheltered location. Q J R Meteorol Soc 102:241–253.  https://doi.org/10.1002/QJ.49710243119 CrossRefGoogle Scholar
  42. Wieringa J (1986) Roughness dependent geographical interpolation of surface wind speed average. Q J R Meteorol Soc 112:867–889.  https://doi.org/10.1002/QJ.49711247316 CrossRefGoogle Scholar
  43. Willingham D, Anderson W, Christensen KT, Barros JM (2014) Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys Fluids 26:025111CrossRefGoogle Scholar
  44. Wood DH (1982) Internal boundary layer growth following a step change in surface roughness. Boundary-Layer Meteorol 22(2):241–244.  https://doi.org/10.1007/bf00118257 CrossRefGoogle Scholar
  45. Yang J, Anderson W (2018) Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul Combust 100:1–17.  https://doi.org/10.1007/s10494-017-9839-5 CrossRefGoogle Scholar
  46. Yang XIA, Meneveau C (2016) Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J Turbul 17(1):75–93CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Central Research Institute of Electric Power IndustryAbiko-shiJapan

Personalised recommendations