Advertisement

Boundary-Layer Meteorology

, Volume 170, Issue 1, pp 127–160 | Cite as

Effect of Vegetation on the Energy Balance and Evapotranspiration in Tallgrass Prairie: A Paired Study Using the Eddy-Covariance Method

  • Xiangmin SunEmail author
  • Chris B. Zou
  • Bradford Wilcox
  • Elaine Stebler
Research Article

Abstract

We carried out a paired study in tallgrass prairie to evaluate the influence of vegetation on the energy exchange and evapotranspiration. Two eddy-covariance systems were installed over two adjoining sites, one of which was denuded of vegetation, with the adjacent, control site kept undisturbed. Our year-long investigation shows that, for quantifying the ground surface heat flux, the soil heat storage above the soil plates is more important than the sub-surface soil heat flux, both temporally and in magnitude. The incorporation of the soil heat storage, therefore, is indispensable for energy balance closure in areas with short vegetation. At our control site, we observed a critical threshold of 0.17 m3 m−3 in the surface (top 0.3 m) soil water content, whereby the energy partitioning is significantly affected by the presence of the photosynthetically active vegetation when the surface soil water content is higher than this critical threshold. The pattern of energy partitioning approaches that of the treated site when the surface soil water content is lower than this threshold (during drought), because of the suppression of plant physiological activities. This threshold also applies to the surface conductance for water vapour at the control site, where yearly evapotranspiration is 728 ± 3 mm (versus 547 ± 2 mm for the treated site). Thus, the soil water content and presence of active vegetation are the key determinants of energy partitioning and evapotranspiration. Any land-cover changes or vegetation-management practices that alter these two factors may change the energy and water budgets in tallgrass prairie.

Keywords

Eddy covariance Energy balance Evapotranspiration Surface conductance Tallgrass prairie 

Notes

Acknowledgements

We are grateful for the insightful comments from the two anonymous reviewers. This research was funded by the National Science Foundation’s Dynamics of Coupled Natural and Human Systems (CNH) program (DEB-1413900). Xiangmin Sun is a PhD student supported by the Sid Kyle Graduate Merit Assistantships in the Department of Ecosystem Science and Management at Texas A&M University. The authors would like to thank Chris Stansberry and Jay Prater for their excellent management of the research site. We also express our appreciation to Georgios Xenakis for his development of the FREddyPro package and for correspondence with the authors. The authors gratefully acknowledge many useful comments provided by James Heilman. We are deeply appreciative of the technical support provided by James Kathilankal, Jiahong Li, and George G. Burba from LI-COR Biosciences, Inc.; and by Sasha Ivans and Ben Conrad from Campbell Scientific, Inc. Finally, the authors are grateful to the many graduate students who helped with field trips, including Briana Wyatt, Patricia Torquato, Giovanne Serrau, Sumit Sharma, and Cynthia Wright.

References

  1. Aires LM, Pio CA, Pereira JS (2008) The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agric For Meteorol 148(4):565–579CrossRefGoogle Scholar
  2. Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agr Ecosyst Environ 121(1–2):5–20CrossRefGoogle Scholar
  3. Anderson RG, Wang D (2014) Energy budget closure observed in paired Eddy covariance towers with increased and continuous daily turbulence. Agric For Meteorol 184:204–209CrossRefGoogle Scholar
  4. Arnold KB (2010) Eddy covariance in a tallgrass prairie: energy balance closure, water and carbon budgets, and shrub expansion. Kansas State University, KansasGoogle Scholar
  5. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492CrossRefGoogle Scholar
  6. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434CrossRefGoogle Scholar
  7. Baldocchi DD, Xu LK, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric For Meteorol 123(1–2):13–39CrossRefGoogle Scholar
  8. Boval M, Dixon RM (2012) The importance of grasslands for animal production and other functions: a review on management and methodological progress in the tropics. Animal 6(5):748–762CrossRefGoogle Scholar
  9. Bremer DJ, Ham JM (1999) Effect of spring burning on the surface energy balance in a tallgrass prairie. Agric For Meteorol 97(1):43–54CrossRefGoogle Scholar
  10. Brock FV, Crawford KC, Elliott RL, Cuperus GW, Stadler SJ, Johnson HL, Eilts MD (1995) The Oklahoma Mesonet—a technical overview. J Atmos OceanTechnol 12(1):5–19Google Scholar
  11. Burba G (2013) Eddy covariance method for scientific, industrial, agricultural and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. LI-Cor BiosciencesGoogle Scholar
  12. Burba GG, Verma SB (2005) Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agric For Meteorol 135(1–4):190–201CrossRefGoogle Scholar
  13. Campbell Scientific I (2016) Model HFP01 soil heat flux plate, instruction manual, pp 5–6Google Scholar
  14. Cava D, Contini D, Donateo A, Martano P (2008) Analysis of short-term closure of the surface energy balance above short vegetation. Agric For Meteorol 148(1):82–93CrossRefGoogle Scholar
  15. Chen SP, Chen JQ, Lin GH, Zhang WL, Miao HX, Wei L, Huang JH, Han XG (2009) Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agric For Meteorol 149(11):1800–1809CrossRefGoogle Scholar
  16. Conant S, Risser PG (1974) Canopy structure of a tall-grass prairie. J Range Manage 27(4):313–318CrossRefGoogle Scholar
  17. Eder F, De Roo F, Rotenberg E, Yakir D, Schmid HP, Mauder M (2015) Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements. Agric For Meteorol 211:115–127CrossRefGoogle Scholar
  18. Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P (2016) Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand. Agric For Meteorol 217:108–119CrossRefGoogle Scholar
  19. Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW (2008) Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biol 14(7):1600–1608CrossRefGoogle Scholar
  20. Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8(10):3053–3068CrossRefGoogle Scholar
  21. Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res Atmos 106(D4):3503–3509CrossRefGoogle Scholar
  22. Fischer ML, Torn MS, Billesbach DP, Doyle G, Northup B, Biraud SC (2012) Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie. Agric For Meteorol 166:169–174CrossRefGoogle Scholar
  23. Foken T (1998) Die scheinbar ungeschlossene Energiebilanz am Erdboden-eine Herausforderung an die Experimentelle Meteorologie. Sitzungsberichte der Leibniz-Sozietät 24(5):131–150Google Scholar
  24. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367CrossRefGoogle Scholar
  25. Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control, handbook of micrometeorology. Springer, BerlinGoogle Scholar
  26. Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Kyaw Tha Paw U (2011) Results of a panel discussion about the energy balance closure correction for trace gases. Bull Am Meteorol Soc 92(4):18CrossRefGoogle Scholar
  27. Frank JM, Massman WJ, Ewers BE (2013) Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers. Agric For Meteorol 171:72–81CrossRefGoogle Scholar
  28. Franssen HJH, Stockli R, Lehner I, Rotenberg E, Seneviratne SI (2010) Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. Agric For Meteorol 150(12):1553–1567CrossRefGoogle Scholar
  29. Gao ZM, Liu HP, Katul GG, Foken T (2017) Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies. Environ Res Lett 12(3):034025CrossRefGoogle Scholar
  30. Ge JJ, Zou C (2013) Impacts of woody plant encroachment on regional climate in the southern Great Plains of the United States. J Geophys Res Atmos 118(16):9093–9104CrossRefGoogle Scholar
  31. Ham JM, Knapp AK (1998) Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89(1):1–14CrossRefGoogle Scholar
  32. Hao YB, Wang YF, Huang XZ, Cui XY, Zhou XQ, Wang SP, Niu HS, Jiang GM (2007) Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia, China. Agric For Meteorol 146(1–2):57–69CrossRefGoogle Scholar
  33. Heidbach K, Schmid HP, Mauder M (2017) Experimental evaluation of flux footprint models. Agric For Meteorol 246:142–153CrossRefGoogle Scholar
  34. Heusinkveld BG, Jacobs AFG, AaM H, Berkowicz SM (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agric For Meteorol 122(1–2):21–37CrossRefGoogle Scholar
  35. Horst TW, Semmer SR, Maclean G (2015) Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing. Boundary-Layer Meteorol 155(3):371–395CrossRefGoogle Scholar
  36. Hunt JE, Kelliher FM, Mcseveny TM, Byers JN (2002) Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agric For Meteorol 111(1):65–82CrossRefGoogle Scholar
  37. Jarvis PG, Mcnaughton KG (1986) Stomatal control of transpiration—scaling up from leaf to region. Adv Ecol Res 15:1–49CrossRefGoogle Scholar
  38. Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys.  https://doi.org/10.1029/2011RG000366 Google Scholar
  39. Kidston J, Brummer C, Black TA, Morgenstern K, Nesic Z, Mccaughey JH, Barr AG (2010) Energy balance closure using Eddy covariance above two different land surfaces and implications for CO2 flux measurements. Boundary-Layer Meteorol 136(2):193–218CrossRefGoogle Scholar
  40. Kim J, Verma SB (1990) Components of surface energy balance in a temperate grassland ecosystem. Boundary-Layer Meteorol 51(4):401–417CrossRefGoogle Scholar
  41. Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112(3):503–523CrossRefGoogle Scholar
  42. Kljun N, Calanca P, Rotach MW, Schmid HP (2015) A simple two-dimensional parameterisation for flux footprint prediction (FFP). Geosci Model Dev. 8(11):3695–3713CrossRefGoogle Scholar
  43. Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484CrossRefGoogle Scholar
  44. Kochendorfer J, Meyers TP, Frank J, Massman WJ, Heuer MW (2012) How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary-Layer Meteorol 145(2):383–398CrossRefGoogle Scholar
  45. Kosugi Y, Takanashi S, Tanaka H, Ohkubo S, Tani M, Yano M, Katayama T (2007) Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. J Hydrol 337(3–4):269–283CrossRefGoogle Scholar
  46. Leuning R, Van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74CrossRefGoogle Scholar
  47. Li SG, Harazono Y, Oikawa T, Zhao HL, He ZY, Chang XL (2000) Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric For Meteorol 102(2–3):125–137Google Scholar
  48. Li Y, Liu SH, Wang S, Miao YC, Chen BC (2014) Comparative study on methods for computing soil heat storage and energy balance in arid and semi-arid areas. J Meteorol Res 28(2):308–322CrossRefGoogle Scholar
  49. Liang JN, Zhang L, Cao XJ, Wen J, Wang JM, Wang GY (2017) Energy balance in the semiarid area of the Loess Plateau, China. J Geophys Res Atmos 122(4):2155–2168CrossRefGoogle Scholar
  50. Liebethal C (2005) On the determination of the ground heat flux in micrometeorology and its influence on the energy balance closure. Doctoral dissertationGoogle Scholar
  51. Limb RF, Engle DM, Alford AL, Hellgren EC (2010) Tallgrass prairie plant community dynamics along a canopy cover gradient of eastern redcedar (Juniperus virginiana L.). Rangel Ecol Manag 63(6):638–644CrossRefGoogle Scholar
  52. Liu XY, Yang SH, Xu JZ, Zhang JG, Liu JT (2017) Effects of soil heat storage and phase shift correction on energy balance closure of paddy fields. Atmosfera 30(1):39–52CrossRefGoogle Scholar
  53. Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150(4):501–509CrossRefGoogle Scholar
  54. Majozi NP, Mannaerts CM, Ramoelo A, Mathieu R, Nickless A, Verhoef W (2017) Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol Earth Syst Sci 21(7):3401–3415CrossRefGoogle Scholar
  55. Masseroni D, Corbari C, Mancini M (2014) Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field. Atmosfera 27(4):335–352CrossRefGoogle Scholar
  56. Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15(6):597–609CrossRefGoogle Scholar
  57. Mckinley DC, Blair JM (2008) Woody plant encroachment by Juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems 11(3):454–468CrossRefGoogle Scholar
  58. McPherson RA, Fiebrich CA, Crawford KC, Elliott RL, Kilby JR, Grimsley DL, Martinez JE, Basara JB, Illston BG, Morris DA, Kloesel KA, Stadler SJ, Melvin AD, Sutherland AJ, Shrivastava H, Carlson JD, Wolfinbarger JM, Bostic JP, Demko DB (2007) Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. J Atmos Ocean Technol 24(3):301–321CrossRefGoogle Scholar
  59. Mengelkamp HT, Beyrich F, Heinemann G, Ament F, Bange J, Berger F, Bosenberg J, Foken T, Hennemuth B, Heret C, Huneke S, Johnsen KP, Kerschgens M, Kohsiek W, Leps JP, Liebethal C, Lohse H, Mauder M, Meijninger W, Raasch S, Simmer C, Spiess T, Tittebrand A, Uhlenbrock J, Zittel R (2006) Evaporation over a heterogeneous land surface—the EVA-GRIPS project. Bull Am Meteorol Soc 87(6):775–786CrossRefGoogle Scholar
  60. Meyers TP (2001) A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric For Meteorol 106(3):205–214CrossRefGoogle Scholar
  61. Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy balance of maize and soybean. Agric For Meteorol 125(1–2):105–115CrossRefGoogle Scholar
  62. Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611CrossRefGoogle Scholar
  63. Moncrieff J, Clement R, Finnigan J, Meyers T (2005) Averaging, detrending, and filtering of Eddy covariance time series. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, DordrechtGoogle Scholar
  64. Monteith J (1965) The state and movement of water in living organisms. In: Proceedings of evaporation and environment, XIXth Symposium 1965, pp 205–234Google Scholar
  65. Monteith JL, Unsworth MH (2013) Principles of environmental physics: plants, animals, and the atmosphere. Elsevier, AmsterdamGoogle Scholar
  66. Moritz S, Sardá A, Bartz-Beielstein T, Zaefferer M, Stork J (2015) Comparison of different methods for univariate time series imputation in R. arXiv preprint arXiv:151003924
  67. Nippert JB, Wieme RA, Ocheltree TW, Craine JM (2012) Root characteristics of C-4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355(1–2):385–394CrossRefGoogle Scholar
  68. Novick KA, Oren R, Stoy PC, Siqueira MBS, Katul GG (2009) Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern US: implications for annual fluxes. Agric For Meteorol 149(9):1491–1504CrossRefGoogle Scholar
  69. Ochsner TE, Sauer TJ, Horton R (2007) Soil heat storage measurements in energy balance studies. Agron J 99(1):311–319CrossRefGoogle Scholar
  70. O’mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110(6):1263–1270CrossRefGoogle Scholar
  71. Oncley SP, Foken T, Vogt R, Kohsiek W, Debruin HAR, Bernhofer C, Christen A, Van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorol 123(1):1–28CrossRefGoogle Scholar
  72. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4):571–583CrossRefGoogle Scholar
  73. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11(9):1424–1439CrossRefGoogle Scholar
  74. Ricketts TH (1999) Terrestrial ecoregions of North America: a conservation assessment. Island Press, Washington, DCGoogle Scholar
  75. Russell ES, Liu HP, Gao ZM, Finn D, Lamb B (2015) Impacts of soil heat flux calculation methods on the surface energy balance closure. Agric For Meteorol 214:189–200CrossRefGoogle Scholar
  76. Ryu Y, Baldocchi DD, Ma S, Hehn T (2008) Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J Geophys Res Atmos.  https://doi.org/10.1029/2007JD009263 Google Scholar
  77. Samson FB, Knopf FL, Ostlie WR (2004) Great Plains ecosystems: past, present, and future. Wildl Soc Bull 32(1):6–15CrossRefGoogle Scholar
  78. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70(5):1569–1578CrossRefGoogle Scholar
  79. Schulze ED, Kelliher FM, Korner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition—a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–662CrossRefGoogle Scholar
  80. Scott RL (2010) Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agric For Meteorol 150(2):219–225CrossRefGoogle Scholar
  81. Scott RL, Huxman TE, Barron-Gafford GA, Jenerette GD, Young JM, Hamerlynck EP (2014) When vegetation change alters ecosystem water availability. Global Change Biol. 20(7):2198–2210CrossRefGoogle Scholar
  82. Skinner RH, Adler PR (2010) Carbon dioxide and water fluxes from switchgrass managed for bioenergy production. Agr Ecosyst Environ 138(3–4):257–264CrossRefGoogle Scholar
  83. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, Van Gorsel E, Kiely G, Knohl A, Margolis H, Mccaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric For Meteorol 171:137–152CrossRefGoogle Scholar
  84. Sun G, Alstad K, Chen JQ, Chen SP, Ford CR, Lin GH, Liu CF, Lu N, Mcnulty SG, Miao HX, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang ZQ (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255CrossRefGoogle Scholar
  85. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300CrossRefGoogle Scholar
  86. Tyrl RJ, Bidwell TG, Masters RE, Elmore RD, Weir JR (2007) Oklahoma’s native vegetation types, Oklahoma State University, Oklahoma Cooperative Extension Service, Stillwater, OK, USA, p. 8Google Scholar
  87. Valayamkunnath P, Sridhar V, Zhao W, Allen RG (2018) Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agric For Meteorol 248:22–47CrossRefGoogle Scholar
  88. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526CrossRefGoogle Scholar
  89. Wagle P, Kakani VG (2014) Growing season variability in evapotranspiration, ecosystem water use efficiency, and energy partitioning in switchgrass. Ecohydrology 7(1):64–72CrossRefGoogle Scholar
  90. Wagle P, Kakani VG, Huhnke RL (2016) Evapotranspiration and ecosystem water use efficiency of switchgrass and high biomass sorghum. Agron J 108(3):1007–1019CrossRefGoogle Scholar
  91. Wang SS, Davidson A (2007) Impact of climate variations on surface albedo of a temperate grassland. Agric For Meteorol 142(2–4):133–142CrossRefGoogle Scholar
  92. Web Soil Survey (2003) United States Department of Agriculture. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Cited 01/06/2017
  93. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106(447):85–100CrossRefGoogle Scholar
  94. Wever LA, Flanagan LB, Carlson PJ (2002) Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric For Meteorol 112(1):31–49CrossRefGoogle Scholar
  95. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150CrossRefGoogle Scholar
  96. Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, Wohlfahrt G, Hasler N, Bernhofer C, Foken T, Papale D, Schymanski S, Schaefer K (2012) Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour Res.  https://doi.org/10.1029/2011WR011586 Google Scholar
  97. Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100(1):1–18CrossRefGoogle Scholar
  98. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1–4):223–243CrossRefGoogle Scholar
  99. Wohlfahrt G, Klumpp K, Soussana J-F (2012) Eddy covariance measurements over grasslands, Eddy Covariance. Springer, BerlinGoogle Scholar
  100. Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018) Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci Discuss 2018:1–39CrossRefGoogle Scholar
  101. Xu K, Metzger S, Desai AR (2017) Surface-atmosphere exchange in a box: space-time resolved storage and net vertical fluxes from tower-based eddy covariance. Agric For Meteorol 255:81–91CrossRefGoogle Scholar
  102. Yue P, Zhang Q, Niu SJ, Cheng H, Wang XY (2011) Effects of the soil heat flux estimates on surface energy balance closure over a semi-arid grassland. Acta Meteorol Sin 25(6):774–782CrossRefGoogle Scholar
  103. Zou CB, Turton D, Will RE, Fuhlendorf SD, Engle D, Hung J (2010) PS 62-146: estimating watershed level evapotranspiration using water budget method. In: The 95th ESA annual meeting 2010Google Scholar
  104. Zou CB, Turton DJ, Will RE, Engle DM, Fuhlendorf SD (2014) Alteration of hydrological processes and streamflow with juniper (Juniperus virginiana) encroachment in a mesic grassland catchment. Hydrol Proc 28(26):6173–6182CrossRefGoogle Scholar
  105. Zuo J-Q, Wang J-M, Huang J-P, Li W, Wang G, Ren H (2011) Estimation of ground heat flux and its impact on the surface energy budget for a semi-arid grassland. Sci Cold Arid Reg 3:41–50Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  2. 2.Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterUSA

Personalised recommendations