Skip to main content
Log in

Velocity Spectra and Coherence Estimates in the Marine Atmospheric Boundary Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Two years of continuous sonic anemometer measurements conducted in 2007 and 2008 at the FINO1 platform are used to investigate the characteristics of the single- and two-point velocity spectra in relation to the atmospheric stability in the marine atmospheric boundary layer. The goals are to reveal the limits of current turbulence models for the estimation of wind loads on offshore structures, and to propose a refined description of turbulence at altitudes where Monin–Obukhov similarity theory may be limited. Using local similarity theory, a composite spectrum model, combining a pointed and a blunt model, is proposed to describe the turbulence spectrum for unstable, neutral and stable conditions. Such a model captures the \(-1\) power law followed by the velocity spectra at an intermediate frequency range in the marine atmospheric boundary layer. For the Monin–Obukhov similarity parameter \(\zeta < 0.3\), the Davenport coherence model captures the vertical coherence of the horizontal velocity components well. A two-parameter exponential decay function is found more appropriate for modelling the coherence of the vertical velocity component. Under increasingly stable conditions, the size of the eddies in the vertical coordinate reduces, such that smaller separation distances than that covered in the present dataset may be required to study the coherence with sufficient accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Jiboori M, Xu Y, Qian Y (2002) Local similarity relationships in the urban boundary layer. Boundary-Layer Meteorol 102(1):63–82

    Google Scholar 

  • Andersen OJ, Løvseth J (1995) Gale force maritime wind. The Frøya data base. Part 1: Sites and instrumentation. review of the data base. J Wind Eng Ind Aerodyn 57(1):97–109

    Google Scholar 

  • Antonia R, Raupach M (1993) Spectral scaling in a high Reynolds number laboratory boundary layer. Boundary-Layer Meteorol 65(3):289–306

    Google Scholar 

  • Argyle P, Watson SJ (2014) Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations. J Wind Eng Ind Aerodyn 131:88–99

    Google Scholar 

  • Barthelmie R (1999) The effects of atmospheric stability on coastal wind climates. Meteorol Appl 6(1):39–47

    Google Scholar 

  • Basu S, Porté-agel F, Foufoula-Georgiou E, Vinuesa JF, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119(3):473–500

    Google Scholar 

  • Bendat J, Piersol A (2011) Random Data: analysis and measurement procedures. Wiley Series in Probability and Statistics. Wiley, Hoboken

    Google Scholar 

  • Berström H, Smedman AS (1995) Stably stratified flow in a marine atmospheric surface layer. Boundary-Layer Meteorol 72(3):239–265

    Google Scholar 

  • Bowen AJ, Flay RGJ, Panofsky HA (1983) Vertical coherence and phase delay between wind components in strong winds below 20 m. Boundary-Layer Meteorol 26(4):313–324

    Google Scholar 

  • Cañadillas B, Muñoz-Esparza D, Neumann T (2011) Fluxes estimation and the derivation of the atmospheric stability at the offshore mast FINO1. In: EWEA OFFSHORE 2011

  • Cao S (2013) Strong winds and their characteristics. In: Advanced structural wind engineering, Springer, pp 1–25

  • Caughey S (1977) Boundary-layer turbulence spectra in stable conditions. Boundary-Layer Meteorol 11(1):3–14

    Google Scholar 

  • Caughey S, Readings C (1975) An observation of waves and turbulence in the earth’s boundary layer. Boundary-Layer Meteorol 9(3):279–296

    Google Scholar 

  • Charney JG (1971) Geostrophic turbulence. J Atmos Sci 28(6):1087–1095

    Google Scholar 

  • Chen J, Hui MC, Xu Y (2007) A comparative study of stationary and non-stationary wind models using field measurements. Boundary-Layer Meteorol 122(1):105–121

    Google Scholar 

  • Cheynet E, Jakobsen JB, Snæbjörnsson J, Mikkelsen T, Sjöholm M, Mann J, Hansen P, Angelou N, Svardal B (2016) Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence. Exp Fluids 57(12):184

    Google Scholar 

  • Cheynet E, Jakobsen JB, Obhrai C (2017) Spectral characteristics of surface-layer turbulence in the North Sea. Energy Procedia 137:414–427

    Google Scholar 

  • Chougule A, Mann J, Kelly M, Larsen GC (2017) Modeling atmospheric turbulence via rapid distortion theory: spectral tensor of velocity and buoyancy. J Atmos Sci 74(4):949–974

    Google Scholar 

  • Chougule A, Mann J, Kelly M, Larsen GC (2018) Simplification and validation of a spectral-tensor model for turbulence including atmospheric stability. Boundary-Layer Meteorol 167(3): 1–27

    Google Scholar 

  • Davenport AG (1961) The spectrum of horizontal gustiness near the ground in high winds. Q J R Meteorol Soc 87(372):194–211

    Google Scholar 

  • Deardorff JW (1970a) Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J Atmos Sci 27(8):1211–1213

    Google Scholar 

  • Deardorff JW (1970b) Preliminary results from numerical integrations of the unstable planetary boundary layer. J Atmos Sci 27(8):1209–1211

    Google Scholar 

  • Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29(1):91–115

    Google Scholar 

  • Drobinski P, Carlotti P, Newsom RK, Banta RM, Foster RC, Redelsperger JL (2004) The structure of the near-neutral atmospheric surface layer. J Atmos Sci 61(6):699–714

    Google Scholar 

  • Drobinski P, Carlotti P, Redelsperger JL, Masson V, Banta RM, Newsom RK (2007) Numerical and experimental investigation of the neutral atmospheric surface layer. J Atmos Sci 64(1):137–156

    Google Scholar 

  • Dunckel M, Hasse L, Krügermeyer L, Schriever D, Wucknitz J (1974) Turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer at sea during ATEX. Boundary-Layer Meteorol 6(1–2):81–106

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372

    Google Scholar 

  • Edson JB, Fairall CW (1998) Similarity relationships in the marine atmospheric surface layer for terms in the tke and scalar variance budgets. J Atmos Sci 55(13):2311–2328

    Google Scholar 

  • Eidsvik KJ (1985) Large-sample estimates of wind fluctuations over the ocean. Boundary-Layer Meteorol 32(2):103–132

    Google Scholar 

  • Fiedler F, Panofsky HA (1970) Atmospheric scales and spectral gaps. Bull Am Meteorol Soc 51(12):1114–1120

    Google Scholar 

  • Flay R, Stevenson D (1988) Integral length scales in strong winds below 20 m. J Wind Eng Ind Aerodyn 28(1):21–30

    Google Scholar 

  • Garratt JR (1994) Review: the atmospheric boundary layer. Earth-Sci Rev 37(1–2):89–134

    Google Scholar 

  • Gjerstad J, Aasen SE, Andersson HI, Brevik I, Løvseth J (1995) An analysis of low-frequency maritime atmospheric turbulence. J Atmos Sci 52(15):2663–2669

    Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147(1):51–82

    Google Scholar 

  • Gryning SE, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol 124(2):251–268

    Google Scholar 

  • Haugen D (1978) Effects of sampling rates and averaging periods of meteorological measurements (turbulence and wind speed data). In: Symposium on meteorological observations and instrumentation, 4 th. Denver, Colo, pp 15–18

  • Haugen D, Kaimal J, Bradley E (1971) An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Q J R Meteorol Soc 97(412):168–180

    Google Scholar 

  • Heggem T, Lende R, Løvseth J (1998) Analysis of long time series of coastal wind. J Atmos Sci 55(18):2907–2917

    Google Scholar 

  • Hess G, Clarke R (1973) Time spectra and cross-spectra of kinetic energy in the planetary boundary layer. Q J R Meteorol Soc 99(419):130–153

    Google Scholar 

  • Hicks BB (1981) An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Meteorol 21(3):389–402

    Google Scholar 

  • Hjorth-Hansen E, Jakobsen A, Strømmen E (1992) Wind buffeting of a rectangular box girder bridge. J Wind Eng Ind Aerodyn 42(1):1215–1226

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42(1):55–78

    Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47(16):1949–1972

    Google Scholar 

  • Högström U (1992) Further evidence of inactive turbulence in the near neutral atmospheric surface layer. In: Proceedings, 10th symposium of turbulence and diffusion, vol 29, pp 188–191

  • Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103(1):101–124

    Google Scholar 

  • Højstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Boundary-Layer Meteorol 21(3):341–356

    Google Scholar 

  • Højstrup J (1982) Velocity spectra in the unstable planetary boundary layer. J Atmos Sci 39(10):2239–2248

    Google Scholar 

  • Holtslag M, Bierbooms W, van Bussel G (2015) Validation of surface layer similarity theory to describe far offshore marine conditions in the Dutch North Sea in scope of wind energy research. J Wind Eng Ind Aerodyn 136:180–191

    Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Royal Soc Lond 454(1971):903–995

    Google Scholar 

  • Hunt JC, Morrison JF (2000) Eddy structure in turbulent boundary layers. Eur J Mech B Fluids 19(5):673–694

    Google Scholar 

  • IEC 61400-1 (2005) IEC 61400-1 Wind turbines Part 1: Design requirements

  • Iwatani Y, Shiotani M (1984) Turbulence of vertical velocities at the coast of reclaimed land. J Wind Eng Ind Aerodyn 17(1):147–157

    Google Scholar 

  • Iyengar AK, Farell C (2001) Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination. J Wind Eng Ind Aerodyn 89(11–12):1059 – 1080, 10th International Conference on Wind Engineering

    Google Scholar 

  • Kader B, Yaglom A (1991) Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification. In: Turbulence and coherent structures, Springer, pp 387–412

  • Kaimal J, Wyngaard J, Izumi Y, Coté O (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589

    Google Scholar 

  • Kaimal J, Wyngaard J, Haugen D, Coté O, Izumi Y, Caughey S, Readings C (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33(11):2152–2169

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56(4):401–410

    Google Scholar 

  • Kato N, Ohkuma T, Kim J, Marukawa H, Niihori Y (1992) Full-scale measurements of wind velocity in two urban areas using an ultrasonic anemometer. J Wind Eng Ind Aerodyn 41(1):67–78

    Google Scholar 

  • Katul GG, Porporato A, Nikora V (2012) Existence of \({k}^{-1}\) power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg’s eddy viscosity. Phys Rev E 86(066):311

    Google Scholar 

  • Kettle AJ (2013) FINO1—research platform in the North Sea. http://folk.uib.no/ake043/AJK_papers/kettle2013_litrev_fino1.pdf

  • Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10(7):1417–1423

    Google Scholar 

  • Krenk S (1996) Wind field coherence and dynamic wind forces. In: IUTAM symposium on advances in nonlinear stochastic mechanics, Springer, pp 269–278

  • Kristensen L, Jensen N (1979) Lateral coherence in isotropic turbulence and in the natural wind. Boundary-Layer Meteorol 17(3):353–373

    Google Scholar 

  • Kristensen L, Kirkegaard P (1986) Sampling problems with spectral coherence. Risø National Laboratory. Risø-R-526

  • Kristensen L, Panofsky HA, Smith SD (1981) Lateral coherence of longitudinal wind components in strong winds. Boundary-Layer Meteorol 21(2):199–205

    Google Scholar 

  • Lange B, Larsen S, Højstrup J, Barthelmie R (2004) The influence of thermal effects on the wind speed profile of the coastal marine boundary layer. Boundary-Layer Meteorol 112(3):587–617

    Google Scholar 

  • Larsén XG, Larsen SE, Petersen EL (2016) Full-scale spectrum of boundary-layer winds. Boundary-Layer Meteorol 159(2):349–371

    Google Scholar 

  • Lauren MK, Menabde M, Seed AW, Austin GL (1999) Characterisation and simulation of the multiscaling properties of the energy-containing scales of horizontal surface-layer winds. Boundary-Layer Meteorol 90(1):21–46

    Google Scholar 

  • Lenschow DH, Stankov B (1986) Length scales in the convective boundary layer. J Atmos Sci 43:1198–1209

    Google Scholar 

  • Lenschow DH, Li XS, Zhu CJ, Stankov BB (1988) The stably stratified boundary layer over the great plains. Boundary-Layer Meteorol 42(1):95–121

    Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Wiley, New York

    Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168

    Google Scholar 

  • Mikkelsen T, Larsen SE, Jørgensen HE, Astrup P, Larsén XG (2017) Scaling of turbulence spectra measured in strong shear flow near the Earths surface. Phys Scr 92(12):124002

    Google Scholar 

  • Miyake M, Stewart R, Burling R (1970) Spectra and cospectra of turbulence over water. Q J R Meteorol Soc 96(407):138–143

    Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187

    Google Scholar 

  • Naito G (1978) Direct measurements of momentum and sensible heat fluxes at the tower in the open sea. J Meteor Soc Japan 56:25–34

    Google Scholar 

  • Nakai T, Shimoyama K (2012) Ultrasonic anemometer angle of attack errors under turbulent conditions. Agric For Meteorol 162:14–26

    Google Scholar 

  • Nastrom G, Gage K, Jasperson W (1984) Kinetic energy spectrum of large-and mesoscale atmospheric processes. Nature 310(5972):36

    Google Scholar 

  • Neckelmann S, Petersen J (2000) Evaluation of the stand-alone wind and wave measurement systems for the Horns Rev 150 MW offshore wind farm in Denmark. In: Proc. offshore wind energy in Mediterranean and other European seas (OWEMES) 2000, pp 17–27

  • Neumann T, Nolopp K (2007) Three years operation of far offshore measurements at FINO1. DEWI Mag 30:42–46

    Google Scholar 

  • Neumann T, Nolopp K, Strack M, Mellinghoff H, Söker H, Mittelstaedt E, Gerasch W, Fischer G (2003) Erection of German offshore measuring platform in the North Sea. DEWI Mag 23:32–46

    Google Scholar 

  • Nicholls S, Readings C (1981) Spectral characteristics of surface layer turbulence over the sea. Q J R Meteorol Soc 107(453):591–614

    Google Scholar 

  • Nieuwstadt FT (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216

    Google Scholar 

  • Obukhov A (1946) Turbulence in thermally inhomogeneous atmosphere. Trudy Inst Teor Geofiz Akad Nauk SSSR 1:95–115

    Google Scholar 

  • Olesen HR, Larsen SE, Højstrup J (1984) Modelling velocity spectra in the lower part of the planetary boundary layer. Boundary-Layer Meteorol 29(3):285–312

    Google Scholar 

  • Panofsky H, Dutton J (1984) Atmospheric turbulence: models and methods for engineering applications. A Wiley interscience publication, New York

    Google Scholar 

  • Panofsky H, Tennekes H, Lenschow DH, Wyngaard J (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteorol 11(3):355–361

    Google Scholar 

  • Panofsky HA, Mizuno T (1975) Horizontal coherence and pasquill’s beta. Boundary-Layer Meteorol 9(3):247–256

    Google Scholar 

  • Panofsky HA, Thomson D, Sullivan D, Moravek D (1974) Two-point velocity statistics over Lake Ontario. Boundary-Layer Meteorol 7(3):309–321

    Google Scholar 

  • Paw UKT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of Eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorol 97(3):487–511

    Google Scholar 

  • Peña A, Gryning SE (2008) Charnock’s roughness length model and non-dimensional wind profiles over the sea. Boundary-Layer Meteorol 128(2):191–203

    Google Scholar 

  • Peña A, Gryning SE, Hasager CB (2008) Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Boundary-Layer Meteorol 129(3):479–495

    Google Scholar 

  • Peña A, Floors R, Sathe A, Gryning SE, Wagner R, Courtney MS, Larsén XG, Hahmann AN, Hasager CB (2016) Ten years of boundary-layer and wind-power meteorology at Høvsøre. Denmark. Boundary-Layer Meteorol 158(1):1–26

    Google Scholar 

  • Pielke R, Panofsky H (1970) Turbulence characteristics along several towers. Boundary-Layer Meteorol 1(2):115–130

    Google Scholar 

  • Pond S, Smith S, Hamblin P, Burling R (1966) Spectra of velocity and temperature fluctuations in the atmospheric boundary layer over the sea. J Atmos Sci 23(4):376–386

    Google Scholar 

  • Richards P, Fong S, Hoxey R (1997) Anisotropic turbulence in the atmospheric surface layer. J Wind Eng Ind Aerodyn 69:903–913

    Google Scholar 

  • Ropelewski CF, Tennekes H, Panofsky H (1973) Horizontal coherence of wind fluctuations. Boundary-Layer Meteorol 5(3):353–363

    Google Scholar 

  • Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution

  • Saranyasoontorn K, Manuel L, Veers PS (2004) A comparison of standard coherence models for inflow turbulence with estimates from field measurements. J Sol Energy Eng 126(4):1069–1082

    Google Scholar 

  • Sathe A, Gryning SE, Peña A (2011) Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy 14(6):767–780

    Google Scholar 

  • Schotanus P, Nieuwstadt F, De Bruin H (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26(1):81–93

    Google Scholar 

  • Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34(7):1001–1027

    Google Scholar 

  • Sempreviva AM, Gryning SE (1996) Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor. Boundary-Layer Meteorol 77(3):331–352

    Google Scholar 

  • Smedman AS, Högström U, Sjöblom A (2003) A note on velocity spectra in the marine boundary layer. Boundary-Layer Meteorol 109(1):27–48

    Google Scholar 

  • Smedman-Högström AS, Högström U (1975) Spectral gap in surface-layer measurements. J Atmos Sci 32(2):340–350

    Google Scholar 

  • Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Eng Mech 16(1):73–86

    Google Scholar 

  • Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34(4):377–397

    Google Scholar 

  • Soucy R, Woodward R, Panofsky HA (1982) Vertical cross-spectra of horizontal velocity components at the boulder observatory. Boundary-Layer Meteorol 24(1):57–66

    Google Scholar 

  • Teunissen H (1980) Structure of mean winds and turbulence in the planetary boundary layer over rural terrain. Boundary-Layer Meteorol 19(2):187–221

    Google Scholar 

  • Thresher R, Robinson M, Veers P (2007) To capture the wind. IEEE Power Energy Mag 5(6):34–46

    Google Scholar 

  • Tieleman HW (1995) Universality of velocity spectra. J Wind Eng Ind Aerodyn 56(1):55–69

    Google Scholar 

  • Türk M, Emeis S (2010) The dependence of offshore turbulence intensity on wind speed. J Wind Eng Ind Aerodyn 98(8–9):466–471

    Google Scholar 

  • Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14(2):160–164

    Google Scholar 

  • Von Karman T (1948) Progress in the statistical theory of turbulence. Proc Natl Acad Sci USA 34(11):530–539

    Google Scholar 

  • Weber R (1999) Remarks on the definition and estimation of friction velocity. Boundary-Layer Meteorol 93(2):197–209

    Google Scholar 

  • Weiler HS, Burling RW (1967) Direct measurements of stress and spectra of turbulence in the boundary layer over the sea. J Atmos Sci 24(6):653–664

    Google Scholar 

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics 15:70–73

    Google Scholar 

  • Westerhellweg A, Neumann T, Riedel V (2012) Fino1 mast correction. Dewi Mag 40:60–66

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Google Scholar 

  • Wyngaard J, Coté O (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98(417):590–603

    Google Scholar 

  • Yumao X, Chaofu Z, Zhongkai L, Wei Z (1997) Turbulent structure and local similarity in the tower layer over the Nanjing area. Boundary-Layer Meteorol 82(1):1–21

    Google Scholar 

  • Zilitinkevich SS, Esau IN (2005) Resistance and heat-transfer laws for stable and neutral planetary boundary layers: Old theory advanced and re-evaluated. Q J R Meteorol Soc 131(609):1863–1892

    Google Scholar 

Download references

Acknowledgements

The FINO1 platform is one of three offshore platforms of the FINO Project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). The present work was developed as a research collaboration within the Norwegian Centre for Offshore Wind Energy (NORCOWE, Project number: 193821 supported by the Research Council Norway). Finally, we thank UL DEWI (Wilhelmshaven, Germany) for providing the sonic anemometer data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Cheynet.

Appendix 1

Appendix 1

In Table 3, the parameters of the pointed–blunt model obtained by the least-squares fit method are displayed for the along-wind component. As this component does not follow Monin–Obukhov similarity theory under unstable conditions, the coefficients \(a^u_i\) and \(b^u_i\), \(i = \left\{ 1,2 \right\} \) are height dependent at \(\zeta < -0.1\). In contrast, the parameters are more or less height independent for a stable stratification as local similarity theory should be applicable in this case. The height dependency is also linked to the modelling of the \(-1\) spectral range, which is more pronounced at lower heights and neutral conditions. For \(\zeta >0.1\), the spectral plateau disappears, while the spectral gap and mesoscale spectral range become dominating features of the 1-h velocity spectrum, such that Eq. 26 can be approximated by Eq. 28.

Table 3 Parameters obtained by fitting Eq. 26 and Eq. 28 to the \(S_u\) velocity spectrum in Fig. 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheynet, E., Jakobsen, J.B. & Reuder, J. Velocity Spectra and Coherence Estimates in the Marine Atmospheric Boundary Layer. Boundary-Layer Meteorol 169, 429–460 (2018). https://doi.org/10.1007/s10546-018-0382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0382-2

Keywords

Navigation